Deterministic Incremental Dependency Parsing

Animated illustration of algorithms presented in Nivre, 2008

Jacob Louis Hoover

April, 2021

Outline:

- 1. Preliminaries
- 1.1 Dependency structures
- 1.2 Incremental dependency parsing
- 2. Stack-based Algorithms
- 2.1 Arc-standard stack-based algorithm
- 2.2 Arc-eager stack-based algorithm
- 3. List-based Algorithms
- 3.1 Non-projective list-based algorithm
- 3.2 Projective list-based algorithm
- 4. Experimental Evaluation

1 Preliminaries

Dependency structures:

Examples

■ A projective English dependency tree from the Penn Treebank (converted to dependency parse with Nivre's Penn2Malt).

■ A non-projective Czech dependency tree from the Prague Dependency Treebank.

("Only one of them concerns quality.")

1 Preliminaries

Incremental dependency parsing

Dependency structures:

Examples

■ A projective English dependency tree from the Penn Treebank (converted to dependency parse with Nivre's Penn2Malt).

■ A non-projective Czech dependency tree from the Prague Dependency Treebank.

("Only one of them concerns quality.")

Formally

 \blacksquare define dependency graph G = (V, A)

1 Preliminaries

Incremental dependency parsing

Dependency structures:

Examples

■ A projective English dependency tree from the Penn Treebank (converted to dependency parse with Nivre's Penn2Malt).

■ A non-projective Czech dependency tree from the Prague Dependency Treebank.

("Only one of them concerns quality.")

- \blacksquare define dependency graph G = (V, A)
 - $V = \{1, \dots, n\}$ set of nodes

1 Preliminaries

Incremental dependency parsing

Dependency structures:

Examples

■ A projective English dependency tree from the Penn Treebank (converted to dependency parse with Nivre's Penn2Malt).

■ A non-projective Czech dependency tree from the Prague Dependency Treebank.

("Only one of them concerns quality.")

- \blacksquare define dependency graph G = (V, A)
 - $V = \{1, \dots, n\}$ set of nodes
 - \blacksquare $A = V \times L \times V$ set of labeled directed arcs

1 Preliminaries

Incremental dependency parsing

Dependency structures:

Examples

■ A projective English dependency tree from the Penn Treebank (converted to dependency parse with Nivre's Penn2Malt).

■ A non-projective Czech dependency tree from the Prague Dependency Treebank.

("Only one of them concerns quality.")

- define dependency graph G = (V, A)
 - $lacksquare V=\{1,\ldots,n\}$ set of nodes
 - \blacksquare $A = V \times L \times V$ set of labeled directed arcs
- define notion of well-formedness

1 Preliminaries

Incremental dependency parsing

Dependency structures:

Examples

■ A projective English dependency tree from the Penn Treebank (converted to dependency parse with Nivre's Penn2Malt).

■ A non-projective Czech dependency tree from the Prague Dependency Treebank.

("Only one of them concerns quality.")

- define dependency graph G = (V, A)
 - $V = \{1, \dots, n\}$ set of nodes
 - \blacksquare $A = V \times L \times V$ set of labeled directed arcs
- define notion of well-formedness
 - by properties Root, SINGLE-HEAD, and ACYCLICITY

1 Preliminaries

Incremental dependency parsing

Dependency structures:

Examples

■ A projective English dependency tree from the Penn Treebank (converted to dependency parse with Nivre's Penn2Malt).

■ A non-projective Czech dependency tree from the Prague Dependency Treebank.

("Only one of them concerns quality.")

- define dependency graph G = (V, A)
 - $V = \{1, \dots, n\}$ set of nodes
 - \blacksquare $A = V \times L \times V$ set of labeled directed arcs
- define notion of well-formedness
 - by properties Root, Single-Head, and Acyclicity
- define property projectivity

1 Preliminaries

Incremental dependency parsing

Dependency structures:

Examples

■ A projective English dependency tree from the Penn Treebank (converted to dependency parse with Nivre's Penn2Malt).

■ A non-projective Czech dependency tree from the Prague Dependency Treebank.

("Only one of them concerns quality.")

- lacktriangle define dependency graph G = (V, A)
 - $V = \{1, \dots, n\}$ set of nodes
 - \blacksquare $A = V \times L \times V$ set of labeled directed arcs
- define notion of well-formedness
 - by properties Root, Single-Head, and Acyclicity
- define property projectivity
 - there exists a path from the head of an arc to any node inside the span of the arc

Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:

■ transition system $S = (C, T, c_s, C_t)$

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - lacksquare C a set of configurations, each containing a buffer eta of (remaining) nodes and a set A of dependency arcs,

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - lacksquare C a set of configurations, each containing a buffer β of (remaining) nodes and a set A of dependency arcs,
 - $\blacksquare T$ a set of transitions $t: C \to C$,

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - lacksquare C a set of configurations, each containing a buffer eta of (remaining) nodes and a set A of dependency arcs,
 - \blacksquare T a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \dots, n]$,

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - lacksquare C a set of configurations, each containing a buffer β of (remaining) nodes and a set A of dependency arcs,
 - \blacksquare T a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x=(w_0,w_1,\ldots,w_n)$ to a configuration with $\beta=[1,\ldots,n]$,
 - lacksquare $C_{ ext{terminal}} \subseteq C$ a set of terminal configurations.

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - $lue{C}$ a set of configurations, each containing a buffer eta of (remaining) nodes and a set A of dependency arcs,
 - \blacksquare T a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \ldots, n]$,
 - lacksquare $C_{\text{terminal}} \subseteq C$ a set of terminal configurations.
- **transition sequence** (derivation): a series of transitions through configurations, starting in a start configuration,

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - $lue{C}$ a set of configurations, each containing a buffer β of (remaining) nodes and a set A of dependency arcs,
 - \blacksquare T a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \ldots, n]$,
 - lacksquare $C_{\text{terminal}} \subseteq C$ a set of terminal configurations.
- **transition sequence** (derivation): a series of transitions through configurations, starting in a start configuration,
- incrementality

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - $lue{C}$ a set of configurations, each containing a buffer β of (remaining) nodes and a set A of dependency arcs,
 - \blacksquare T a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \ldots, n]$,
 - $ightharpoonup C_{\text{terminal}} \subseteq C$ a set of terminal configurations.
- **transition sequence** (derivation): a series of transitions through configurations, starting in a start configuration,
- incrementality
 - buffer always decreasing in size, and derivation is over when empty

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - $lue{C}$ a set of configurations, each containing a buffer β of (remaining) nodes and a set A of dependency arcs,
 - \blacksquare T a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \ldots, n]$,
 - $ightharpoonup C_{\text{terminal}} \subseteq C$ a set of terminal configurations.
- **transition sequence** (derivation): a series of transitions through configurations, starting in a start configuration,
- incrementality
 - buffer always decreasing in size, and derivation is over when empty
 - once an arc is added to A, it is never removed

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - $lue{C}$ a set of configurations, each containing a buffer β of (remaining) nodes and a set A of dependency arcs.
 - \blacksquare T a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \ldots, n]$,
 - $ightharpoonup C_{\text{terminal}} \subseteq C$ a set of terminal configurations.
- **transition sequence** (derivation): a series of transitions through configurations, starting in a start configuration,
- incrementality
 - buffer always decreasing in size, and derivation is over when empty
 - once an arc is added to A, it is never removed
- correctness of an algorithm (soundness and completeness) for a class of dependency graphs

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - lacksquare C a set of configurations, each containing a buffer eta of (remaining) nodes and a set A of dependency arcs,
 - $\blacksquare T$ a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \dots, n]$,
 - $C_{\text{terminal}} \subseteq C$ a set of terminal configurations.
- transition sequence (derivation): a series of transitions through configurations, starting in a start configuration,
- incrementality
 - buffer always decreasing in size, and derivation is over when empty
 - once an arc is added to A, it is never removed
- correctness of an algorithm (soundness and completeness) for a class of dependency graphs
- an oracle

Incremental dependency parsing

- transition system $S = (C, T, c_s, C_t)$
 - $lue{C}$ a set of configurations, each containing a buffer β of (remaining) nodes and a set A of dependency arcs.
 - \blacksquare T a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \ldots, n]$,
 - $ightharpoonup C_{\text{terminal}} \subseteq C$ a set of terminal configurations.
- transition sequence (derivation): a series of transitions through configurations, starting in a start configuration,
- incrementality
 - buffer always decreasing in size, and derivation is over when empty
 - once an arc is added to A, it is never removed
- correctness of an algorithm (soundness and completeness) for a class of dependency graphs
- an oracle
 - for a transition system S, an oracle is a function $o: C \to T$ specifying which transition to take for any given configuration

Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:

- transition system $S = (C, T, c_s, C_t)$
 - C a set of configurations, each containing a buffer β of (remaining) nodes and a set A of dependency arcs,
 - $\blacksquare T$ a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \dots, n]$,
 - lacksquare $C_{\text{terminal}} \subseteq C$ a set of terminal configurations.
- transition sequence (derivation): a series of transitions through configurations, starting in a start configuration,
- incrementality
 - buffer always decreasing in size, and derivation is over when empty
 - once an arc is added to A, it is never removed
- correctness of an algorithm (soundness and completeness) for a class of dependency graphs
- an oracle
 - for a transition system S, an oracle is a function $o:C\to T$ specifying which transition to take for any given configuration

$\mathsf{Parse}(x = (w_0, \dots, w_n))$

- 1: $c \leftarrow c_s(x)$
- 2: while $c \notin C_t$ do
- $c \leftarrow [o(c)](c)$
- 4: end while
- 5: return G_c

Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:

- transition system $S = (C, T, c_s, C_t)$
 - C a set of configurations, each containing a buffer β of (remaining) nodes and a set A of dependency arcs,
 - $\blacksquare T$ a set of transitions $t: C \to C$,
 - c_{start} an initialization function, mapping a sentence $x = (w_0, w_1, \dots, w_n)$ to a configuration with $\beta = [1, \dots, n]$,
 - lacksquare $C_{\text{terminal}} \subseteq C$ a set of terminal configurations.
- transition sequence (derivation): a series of transitions through configurations, starting in a start configuration,
- incrementality
 - buffer always decreasing in size, and derivation is over when empty
 - once an arc is added to A, it is never removed
- correctness of an algorithm (soundness and completeness) for a class of dependency graphs
- an oracle
 - for a transition system S, an oracle is a function $o:C\to T$ specifying which transition to take for any given configuration

$\mathsf{Parse}(x = (w_0, \dots, w_n))$

- 1: $c \leftarrow c_s(x)$
- 2: while $c \notin C_t$ do
- $c \leftarrow [o(c)](c)$
- 4: end while
- 5: return G_c
- Stack-based Algorithms (for projective structures)
 - arc-standard
 - arc-eager
- List-based Algorithms
 - non-projective
 - projective

Arc-eager stack-based algorithm

Stack-based Algorithms

Definition

A stack-based configuration for a sentence $x = (w_0, w_1, \dots, w_n)$ is a triple $c = (\sigma, \beta, A)$, where

- 1. σ is a stack of tokens $i \leq k$ (for some $k \leq n$) \leftarrow will represent as a list with head to right
- 2. β is a buffer of tokens j > k, \leftarrow will represent as a list with head to left
- 3. A is a set of dependency arcs such that $G = (\{0, 1, \dots, n\}, A)$ is a dependency graph for x.

Definition

A stack-based transition system is a quadruple $S = (C, T, c_{\text{start}}, C_{\text{terminal}})$, where

- 1. *C* is the set of all stack-based configurations,
- 2. $c_{\text{start}}(x = (w_0, w_1, \dots, w_n)) = ([0], [1, \dots, n], \varnothing),$
- 3. T is a set of transitions, each of which is a function $t: C \to C$,
- **4.** $C_{\text{terminal}} = \{ c \in C \mid c = (\sigma, [], A) \}.$

Transitions LEFT-ARC $_l$ $(\sigma|i,j|\beta,A) \Rightarrow (\sigma,j|\beta,A \cup \{(j,l,i)\})$ RIGHT-ARC $_l^s$ $(\sigma|i,j|\beta,A) \Rightarrow (\sigma,i|\beta,A \cup \{(i,l,j)\})$ SHIFT $(\sigma,i|\beta,A) \Rightarrow (\sigma|i,\beta,A)$ Preconditions LEFT-ARC $_l$ $\neg[i=0]$ $\neg\exists k\exists l'[(k,l',i) \in A]$ RIGHT-ARC $_l^s$ $\neg\exists k\exists l'[(k,l',j) \in A]$

Figure: Transitions for the arc-standard stack-based parsing algorithm.

"

The arc-standard parser is the closest correspondent to the familiar shift-reduce parser for context-free grammars (Aho, Sethi, and Ullman 1986).

The Left-Arc $_l$ and Right-Arc $_l^s$ transitions correspond to reduce actions, replacing a head-dependent structure with its head, whereas the Shift transition is exactly the same as the shift action.

One peculiarity of the transitions, as defined here, is that the "reduce" transitions apply to one node on the stack and one node in the buffer, rather than two nodes on the stack. The reason for this formulation is to facilitate comparison with the arc-eager parser and to simplify the definition of terminal configurations.

Arc-eager stack-based algorithm

Illustration Arc-standard transition sequence for English example sentence:

$[ROOT]_0$	Economic ₁	$news_2$	had_3	little ₄	effect ₅	on_6	financial ₇	markets ₈	.9
------------	-----------------------	----------	---------	---------------------	---------------------	--------	------------------------	----------------------	----

	σ	β	A	
1.	([0],	$[1,\ldots,9]$], Ø)

Arc-eager stack-based algorithm

Illustration Arc-standard transition sequence for English example sentence:

[ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

		σ	$oldsymbol{eta}$	A
1.	Shift \Longrightarrow	([0],	$[1, \ldots, 9],$ $[2, \ldots, 9],$	Ø)

Illustration Arc-standard transition sequence for English example sentence:

[ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2, \ldots, 9],$	$A_1 = \{(2, NMOD, 1)\}$)

Arc-eager stack-based algorithm

Illustration Arc-standard transition sequence for English example sentence:

[ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)

Illustration Arc-standard transition sequence for English example sentence:

__NMOD____SBJ__ [ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	Shift \Longrightarrow	([0, 1],	$[2, \ldots, 9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)

Arc-eager stack-based algorithm

Illustration Arc-standard transition sequence for English example sentence:

NMOD— SBJ— [ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	Shift \Longrightarrow	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	Shift \Longrightarrow	([0, 3],	$[4,\ldots,9],$	A_2)

Arc-eager stack-based algorithm

Illustration Arc-standard transition sequence for English example sentence:

__NMOD_____SBJ__ [ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .9

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$Shift \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$Shift \implies$	([0, 3],	$[4,\ldots,9],$	A_2)
7.	$Shift \implies$	([0, 3, 4],	$[5, \ldots, 9],$	A_2)

Illustration Arc-standard transition sequence for English example sentence:

✓—NMOD—— ✓—SBJ— _NMOD_ [ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$SHIFT \implies$	([0, 3],	$[4,\ldots,9],$	A_2)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_2)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_3 = A_2 \cup \{(5, \mathtt{NMOD}, 4)\}$)

Illustration Arc-standard transition sequence for English example sentence:

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$SHIFT \implies$	([0, 3],	$[4,\ldots,9],$	A_2)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_2)
8.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0, 3],	$[5,\ldots,9],$	$A_3=A_2\cup\{(5,\mathtt{NMOD},4)\}$)
9.	$SHIFT \implies$	([0, 3, 5],	$[6,\ldots,9],$	A_3)

Arc-eager stack-based algorithm

Illustration Arc-standard transition sequence for English example sentence:

✓—NMOD—— ✓—SBJ— ∠NMOD¬ [ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

			σ	β	A
1.		([0],	$[1,\ldots,9],$	Ø)
2.	Shift \Longrightarrow	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left\text{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\} $
4.	Shift \Longrightarrow	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, SBJ, 2)\} $
6.	Shift \Longrightarrow	([0, 3],	$[4,\ldots,9],$	A_2)
7.	Shift \Longrightarrow	([0, 3, 4],	$[5,\ldots,9],$	A_2
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_3 = A_2 \cup \{(5, \texttt{NMOD}, 4)\})$
9.	Shift \Longrightarrow	([0, 3, 5],	$[6,\ldots,9],$	A_3
10.	Shift \Longrightarrow	([0, 3, 5, 6],	[7, 8, 9],	A_3

Arc-eager stack-based algorithm

Illustration Arc-standard transition sequence for English example sentence:

			σ	β	A
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0,1],	$[2,\ldots,9],$	\varnothing
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\} $
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, SBJ, 2)\} $
6.	$SHIFT \implies$	([0, 3],	$[4,\ldots,9],$	A_2)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_2)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_3 = A_2 \cup \{(5, \texttt{NMOD}, 4)\})$
9.	$SHIFT \implies$	([0, 3, 5],	$[6,\ldots,9],$	A_3
10.	$SHIFT \implies$	([0, 3, 5, 6],	[7, 8, 9],	A_3
11.	$SHIFT \implies$	([0, 3, 5, 6, 7],	[8, 9],	A_3

Arc-eager stack-based algorithm

	✓—NMOD——	✓ SBJ ✓	-NMOD-\	NMOD——
[ROC	$[T]_0$ Economic ₁ nev	ws_2 had $_3$ little	e ₄ effect ₅	on ₆ financial ₇ markets ₈ . ₉
		σ	β	A
1.	(([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies O$	[0,1],	$[2, \ldots, 9],$	Ø)
3.	$Left\text{-}Arc_{NMOD} \implies 0$	[0],	$[2, \ldots, 9],$	$A_1 = \{(2, NMOD, 1)\}$
4.	$SHIFT \implies O$	[0, 2],	$[3,\ldots,9],$	A_1
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies 0$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, SBJ, 2)\} $
6.	$SHIFT \implies O$	[0,3],	$[4,\ldots,9],$	A_2
7.	$SHIFT \implies O$	[0, 3, 4],	$[5,\ldots,9],$	A_2
8.	$Left-Arc_{NMOD} \implies 0$	([0,3],	$[5,\ldots,9],$	$A_3 = A_2 \cup \{(5, \texttt{NMOD}, 4)\})$
9.	$SHIFT \implies 0$	([0,3,5],	$[6,\ldots,9],$	A_3
10.	$SHIFT \implies O$	[0, 3, 5, 6],	[7, 8, 9],	A_3
11.	$SHIFT \implies O$	[0, 3, 5, 6, 7],	[8, 9],	A_3
12.	$Left\text{-}Arc_{NMOD} \implies ($	[0, 3, 5, 6],	[8, 9],	$A_4 = A_3 \cup \{(8, \texttt{NMOD}, 7)\})$

-PMOD-

	VMOD—	✓ SBJ ✓ ✓	-NMOD-\	/ NMOD—	
[ROC	$[OT]_0$ Economic ₁ ne	ews_2 had_3 little	e ₄ effect ₅	on_6 financial ₇ markets ₈	•9
		σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0,1],	$[2, \ldots, 9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2, \ldots, 9],$	$A_1 = \{(2, \texttt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0,2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$SHIFT \implies$	([0,3],	$[4, \ldots, 9],$	A_2)
7.	$SHIFT \implies$	([0,3,4],	$[5,\ldots,9],$	A_2)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0,3],	$[5,\ldots,9],$	$A_3=A_2\cup\{(5,\mathtt{NMOD},4)\}$)
9.	$SHIFT \implies$	([0,3,5],	$[6,\ldots,9],$	A_3)
10.	$SHIFT \implies$	([0,3,5,6],	[7, 8, 9],	A_3)
11.	$SHIFT \implies$	([0,3,5,6,7],	[8, 9],	A_3)
12.	$Left ext{-}Arc_{NMOD} \implies$	([0,3,5,6],	[8, 9],	$A_4 = A_3 \cup \{(8, \texttt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^s_{\mathtt{PMOD}} \implies$	([0,3,5],	[6, 9],	$A_5=A_4\cup\{(6,\mathtt{PMOD},8)\}$)

_NMOD__ NMOD__ / -NMOD-____ ∠SBJ-_ [ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .9 β A σ [0],1. $[1, \ldots, 9],$ Ø 2. [0, 1], $[2, \ldots, 9],$ Shift \Longrightarrow Ø 3. $\mathsf{Left} ext{-}\mathsf{Arc}_{\mathsf{NMOD}} \implies$ [0], $[2, \ldots, 9],$ $A_1 = \{(2, NMOD, 1)\}$ [0, 2],4. Shift \Longrightarrow $[3, \ldots, 9],$ A_1 $A_2 = A_1 \cup \{(3, SBJ, 2)\}$ [0], $[3, \ldots, 9],$ 5. $\mathsf{Left} ext{-}\mathsf{Arc}_{\mathtt{SBJ}} \implies$ 6. [0, 3], $[4, \ldots, 9],$ Shift \Longrightarrow A_2 [0, 3, 4], $[5, \ldots, 9],$ 7. Shift \Longrightarrow $A_3 = A_2 \cup \{(5, NMOD, 4)\}$ 8. [0, 3], $[5, \ldots, 9],$ $Left-Arc_{NMOD} \implies$ 9. [0, 3, 5], $[6, \ldots, 9],$ Shift \Longrightarrow A_3 10. Shift \Longrightarrow [0, 3, 5, 6],[7, 8, 9], A_3 11. [0, 3, 5, 6, 7],[8, 9],Shift \Longrightarrow A_3 12. $Left-Arc_{NMOD} \implies$ [0, 3, 5, 6],[8, 9], $A_4 = A_3 \cup \{(8, NMOD, 7)\}$ 13. $\mathsf{Right} ext{-}\mathsf{Arc}^s_{\mathtt{PMOD}} \implies$ $A_5 = A_4 \cup \{(6, PMOD, 8)\}$ [0, 3, 5],[6, 9], $A_6 = A_5 \cup \{(5, NMOD, 6)\}$ 14. $Right-Arc_{nmod}^s \Longrightarrow$ [0, 3],[5, 9],

 $A_7 = A_6 \cup \{(3, OBJ, 5)\}$

Arc-standard stack-based algorithm

15.

 $Right-Arc^s_{OBJ} \Longrightarrow$

Arc-eager stack-based algorithm

Illustration Arc-standard transition sequence for English example sentence:

[ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .9 β A σ [0],1. $[1, \ldots, 9],$ Ø 2. [0, 1], $[2, \ldots, 9],$ Shift \Longrightarrow Ø 3. $\mathsf{Left} ext{-}\mathsf{Arc}_{\mathsf{NMOD}} \implies$ [0], $[2, \ldots, 9],$ $A_1 = \{(2, NMOD, 1)\}$ [0, 2],4. Shift \Longrightarrow $[3, \ldots, 9],$ A_1 $A_2 = A_1 \cup \{(3, SBJ, 2)\}$ [0], $[3, \ldots, 9],$ 5. $\mathsf{Left}\text{-}\mathsf{Arc}_{\mathsf{SR},\mathsf{I}} \implies$ 6. [0, 3], $[4, \ldots, 9],$ Shift \Longrightarrow A_2 Shift \Longrightarrow [0, 3, 4], $[5, \ldots, 9],$ 7. $A_3 = A_2 \cup \{(5, NMOD, 4)\}$ 8. [0, 3], $[5, \ldots, 9],$ $Left-Arc_{NMOD} \implies$ 9. [0, 3, 5], $[6, \ldots, 9],$ Shift \Longrightarrow A_3 10. Shift \Longrightarrow [0, 3, 5, 6],[7, 8, 9], A_3 11. [0, 3, 5, 6, 7],[8, 9],Shift \Longrightarrow A_3 12. $\mathsf{Left} ext{-}\mathsf{Arc}_{\mathsf{NMOD}} \implies$ [0, 3, 5, 6],[8, 9], $A_4 = A_3 \cup \{(8, NMOD, 7)\}$ $\mathsf{Right} ext{-}\mathsf{Arc}^s_{\mathtt{PMOD}} \implies$ $A_5 = A_4 \cup \{(6, PMOD, 8)\}$ 13. [0, 3, 5],[6, 9], $Right-Arc^s_{nmod} \implies$ $A_6 = A_5 \cup \{(5, NMOD, 6)\}$ 14. [0, 3],[5, 9],

[3, 9],

[0],

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0,1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$Shift \implies$	([0, 3],	$[4,\ldots,9],$	A_2)
7.	$Shift \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_2)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_3=A_2\cup\{(5,\mathtt{NMOD},4)\}$)
9.	$Shift \implies$	([0, 3, 5],	$[6,\ldots,9],$	A_3)
10.	$Shift \implies$	([0, 3, 5, 6],	[7, 8, 9],	A_3)
11.	$Shift \implies$	([0, 3, 5, 6, 7],	[8, 9],	A_3)
12.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3, 5, 6],	[8, 9],	$A_4 = A_3 \cup \{(8, \texttt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^s_{\mathtt{PMOD}} \implies$	([0, 3, 5],	[6, 9],	$A_5 = A_4 \cup \{(6, \texttt{PMOD}, 8)\}$)
14.	$Right ext{-}Arc^s_{\mathtt{NMOD}} \implies$	([0, 3],	[5, 9],	$A_6 = A_5 \cup \{(5, \mathtt{NMOD}, 6)\}$)
15.	Right-Arc $_{\mathtt{OBJ}}^{s} \Longrightarrow$	([0],	[3, 9],	$A_7 = A_6 \cup \{(3, \mathtt{OBJ}, 5)\}$)
16.	$SHIFT \implies$	([0, 3],	[9],	A_7)

16.

17.

Illustration Arc-standard transition sequence for English example sentence:

```
[ROOT]<sub>0</sub> Economic<sub>1</sub> news<sub>2</sub> had<sub>3</sub> little<sub>4</sub> effect<sub>5</sub> on<sub>6</sub> financial<sub>7</sub> markets<sub>8</sub> .<sub>9</sub>
                                                                               β
                                                                                                    A
                                                      \sigma
                                                      [0],
   1.
                                                                               [1, \ldots, 9],
                                                                                                    Ø
   2.
                                                      [0, 1],
                                                                               [2, \ldots, 9],
                         Shift \Longrightarrow
                                                                                                    Ø
   3.
             \mathsf{Left}	ext{-}\mathsf{Arc}_{\mathsf{NMOD}} \implies
                                                      [0],
                                                                               [2, \ldots, 9],
                                                                                                    A_1 = \{(2, NMOD, 1)\}
                                                      [0, 2],
   4.
                         Shift \Longrightarrow
                                                                               [3, \ldots, 9],
                                                                                                    A_1
                                                                                                    A_2 = A_1 \cup \{(3, SBJ, 2)\}
                                                      [0],
                                                                               [3, \ldots, 9],
   5.
              \mathsf{Left}\text{-}\mathsf{Arc}_{\mathsf{SR},\mathsf{I}} \implies
   6.
                                                      [0, 3],
                                                                               [4, \ldots, 9],
                          Shift \Longrightarrow
                                                                                                    A_2
                                                      [0, 3, 4],
                                                                               [5, \ldots, 9],
   7.
                          Shift \Longrightarrow
                                                                                                    A_3 = A_2 \cup \{(5, NMOD, 4)\}
   8.
                                                      [0, 3],
                                                                               [5, \ldots, 9],
             Left-Arc_{NMOD} \implies
   9.
                                                      [0, 3, 5],
                                                                               [6, \ldots, 9],
                          Shift \Longrightarrow
                                                                                                    A_3
  10.
                          Shift \Longrightarrow
                                                      [0, 3, 5, 6],
                                                                               [7, 8, 9],
                                                                                                    A_3
 11.
                                                                               [8, 9],
                          Shift \Longrightarrow
                                                      [0, 3, 5, 6, 7],
                                                                                                    A_3
 12.
             \mathsf{Left}	ext{-}\mathsf{Arc}_{\mathsf{NMOD}} \implies
                                                      [0, 3, 5, 6],
                                                                               [8, 9],
                                                                                                    A_4 = A_3 \cup \{(8, NMOD, 7)\}
           \mathsf{Right}	ext{-}\mathsf{Arc}^s_{\mathtt{PMOD}} \implies
                                                                                                    A_5 = A_4 \cup \{(6, PMOD, 8)\}
 13.
                                                      [0, 3, 5],
                                                                               [6, 9],
 14.
           Right-Arc_{nmod}^s \Longrightarrow
                                                      [0, 3],
                                                                               [5, 9],
                                                                                                    A_6 = A_5 \cup \{(5, NMOD, 6)\}
 15.
             Right-Arc^s_{OBJ} \Longrightarrow
                                                      [0],
                                                                               [3, 9],
                                                                                                    A_7 = A_6 \cup \{(3, OBJ, 5)\}
```

[9],

[3],

 $A_8 = A_7 \cup \{(3, P, 9)\}$

[0, 3],

[0],

Shift \Longrightarrow $\mathsf{Right}\text{-}\mathsf{Arc}^s_{\mathsf{p}} \implies$

```
[0],
                                                                             [1, \ldots, 9],
  1.
                                                                                                 Ø
  2.
                                                    [0, 1],
                                                                             [2, \ldots, 9],
                        Shift \Longrightarrow
                                                                                                 Ø
  3.
            \mathsf{Left}	ext{-}\mathsf{Arc}_{\mathsf{NMOD}} \implies
                                                    [0],
                                                                             [2, \ldots, 9],
                                                                                                 A_1 = \{(2, NMOD, 1)\}
                                                    [0, 2],
  4.
                        Shift \Longrightarrow
                                                                             [3, \ldots, 9],
                                                                                                 A_1
                                                                                                 A_2 = A_1 \cup \{(3, SBJ, 2)\}
                                                    [0],
  5.
             Left-Arc_{SRJ} \Longrightarrow
                                                                             [3, \ldots, 9],
  6.
                                                    [0, 3].
                                                                             [4, \ldots, 9],
                        Shift \Longrightarrow
                                                                                                 A_2
                                                    [0, 3, 4],
                                                                             [5, \ldots, 9],
  7.
                        Shift \Longrightarrow
                                                                                                 A_3 = A_2 \cup \{(5, \texttt{NMOD}, 4)\}
  8.
                                                    [0, 3],
                                                                             [5, \ldots, 9],
            \mathsf{Left}	ext{-}\mathsf{Arc}_{\mathsf{NMOD}} \implies
 9.
                                                    [0, 3, 5],
                                                                             [6, \ldots, 9],
                        Shift \Longrightarrow
                                                                                                 A_3
10.
                        Shift \Longrightarrow
                                                    [0, 3, 5, 6],
                                                                             [7, 8, 9],
                                                                                                 A_3
                                                                             [8, 9],
11.
                        Shift \Longrightarrow
                                                    [0, 3, 5, 6, 7],
                                                                                                 A_3
12.
            \mathsf{Left}	ext{-}\mathsf{Arc}_{\mathsf{NMOD}} \implies
                                                    [0, 3, 5, 6],
                                                                             [8, 9],
                                                                                                 A_4 = A_3 \cup \{(8, NMOD, 7)\}
         \mathsf{Right}	ext{-}\mathsf{Arc}^s_{\mathtt{PMOD}} \implies
                                                                                                 A_5 = A_4 \cup \{(6, PMOD, 8)\}
13.
                                                    [0, 3, 5],
                                                                             [6, 9],
14.
         Right-Arc_{nmod}^s \Longrightarrow
                                                    [0, 3],
                                                                             [5, 9],
                                                                                                 A_6 = A_5 \cup \{(5, NMOD, 6)\}
15.
           Right-Arc^s_{OBJ} \Longrightarrow
                                                    [0],
                                                                             [3, 9],
                                                                                                 A_7 = A_6 \cup \{(3, OBJ, 5)\}
                                                    [0, 3],
                                                                             [9],
16.
                        Shift \Longrightarrow
                                                                                                 A_7
17.
              Right-Arc_{p}^{s} \Longrightarrow
                                                                             [3],
                                                                                                 A_8 = A_7 \cup \{(3, P, 9)\}
                                                    [0],
18.
         Right-Arc_{rot}^s \Longrightarrow
                                                    Π,
                                                                             [0],
                                                                                                 A_9 = A_8 \cup \{(0, ROOT, 3)\}
```

				σ	β	A	
1.			([0],	$[1,\ldots,9],$	Ø)
2.	Shift	\Longrightarrow	([0, 1],	$[2,\ldots,9],$	Ø)
3.	Left-Arc _{nmod}	\Longrightarrow	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	Shift	\Longrightarrow	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{SBJ}$	\Longrightarrow	([0],	$[3,\ldots,9],$	$A_2=A_1\cup\{(3,\mathtt{SBJ},2)\}$)
6.	Shift	\Longrightarrow	([0, 3],	$[4,\ldots,9],$	A_2)
7.	Shift	\Longrightarrow	([0, 3, 4],	$[5,\ldots,9],$	A_2)
8.	Left-Arc _{nmod}	\Longrightarrow	([0, 3],	$[5,\ldots,9],$	$A_3=A_2\cup\{(5,\mathtt{NMOD},4)\}$)
9.	Shift	\Longrightarrow	([0, 3, 5],	$[6,\ldots,9],$	A_3)
10.	Shift	\Longrightarrow	([0, 3, 5, 6],	[7, 8, 9],	A_3)
11.	Shift	\Longrightarrow	([0, 3, 5, 6, 7],	[8, 9],	A_3)
12.	Left-Arc _{nmod}	\Longrightarrow	([0, 3, 5, 6],	[8, 9],	$A_4 = A_3 \cup \{(8, \texttt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^s_{\mathtt{PMOD}}$	\Longrightarrow	([0, 3, 5],	[6, 9],	$A_5=A_4\cup\{(6,\mathtt{PMOD},8)\}$)
14.	$Right ext{-}Arc^s_{\mathtt{NMOD}}$	\Longrightarrow	([0, 3],	[5, 9],	$A_6 = A_5 \cup \{(5, \mathtt{NMOD}, 6)\}$)
15.	Rіght-Arc $_{\mathtt{OBJ}}^{s}$	\Longrightarrow	([0],	[3, 9],	$A_7 = A_6 \cup \{(3, \mathtt{OBJ}, 5)\}$)
16.	Shift	\Longrightarrow	([0, 3],	[9],	A_7)
17.	$Right ext{-}Arc^s_{\mathtt{P}}$		([0],	[3],	$A_8 = A_7 \cup \{(3, P, 9)\}$)
18.	Right-Arc $_{\mathtt{ROOT}}^s$	\Longrightarrow	([],	[0],	$A_9 = A_8 \cup \{(0, \mathtt{ROOT}, 3)\}$)
19.	Shift	\Longrightarrow	([0],	[],	A_9)

Arc-eager stack-based algorithm

				σ	β	A	
1.			([0],	$[1,\ldots,9],$	Ø)
2.	Shift	\Longrightarrow	([0, 1],	$[2,\ldots,9],$	Ø)
3.	Left-Arc _{nmod}	\Longrightarrow	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	Shift	\Longrightarrow	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{SBJ}$	\Longrightarrow	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3,\mathtt{SBJ},2)\}$)
6.	Shift	\Longrightarrow	([0, 3],	$[4,\ldots,9],$	A_2)
7.	Shift	\Longrightarrow	([0, 3, 4],	$[5,\ldots,9],$	A_2)
8.	Left-Arc _{nmod}	\Longrightarrow	([0, 3],	$[5,\ldots,9],$	$A_3=A_2\cup\{(5,\mathtt{NMOD},4)\}$)
9.	Shift	\Longrightarrow	([0, 3, 5],	$[6,\ldots,9],$	A_3)
10.	Shift	\Longrightarrow	([0, 3, 5, 6],	[7, 8, 9],	A_3)
11.	Shift	\Longrightarrow	([0, 3, 5, 6, 7],	[8, 9],	A_3)
12.	Left-Arc _{nmod}	\Longrightarrow	([0, 3, 5, 6],	[8, 9],	$A_4 = A_3 \cup \{(8, \texttt{NMOD}, 7)\}$)
13.	RIGHT-ARC $_{\mathtt{PMOD}}^{s}$	\Longrightarrow	([0, 3, 5],	[6, 9],	$A_5 = A_4 \cup \{(6, \texttt{PMOD}, 8)\}$)
14.	$Right ext{-}Arc^s_{\mathtt{NMOD}}$	\Longrightarrow	([0, 3],	[5, 9],	$A_6 = A_5 \cup \{(5, \texttt{NMOD}, 6)\}$)
15.	$Right ext{-}Arc^s_{\mathtt{OBJ}}$	\Longrightarrow	([0],	[3, 9],	$A_7 = A_6 \cup \{(3, \mathtt{OBJ}, 5)\}$)
16.	Shift	\Longrightarrow	([0, 3],	[9],	A_7)
17.	$Right ext{-}Arc^s_{\mathtt{P}}$	\Longrightarrow	([0],	[3],	$A_8 = A_7 \cup \{(3, P, 9)\}$)
18.	RIGHT-ARC $_{\mathtt{ROOT}}^{s}$	\Longrightarrow	([],	[0],	$A_9 = A_8 \cup \{(0, \mathtt{ROOT}, 3)\}$)
19.	Shift	\Longrightarrow	([0],	[],	A_9)

Arc-eager stack-based algorithm

Arc-eager stack-based algorithm

Transitions LEFT-ARC1 $(\sigma|i,j|\beta,A) \Rightarrow (\sigma,j|\beta,A\cup\{(j,l,i)\})$ RIGHT-ARC1 $(\sigma|i,j|\beta,A) \Rightarrow (\sigma|i|j,\beta,A \cup \{(i,l,j)\})$ REDUCE $(\sigma|i,\beta,A) \Rightarrow (\sigma,\beta,A)$ $(\sigma, i | \beta, A) \Rightarrow (\sigma | i, \beta, A)$ SHIFT **Preconditions** LEFT-ARC1 $\neg[i=0]$ $\neg \exists k \exists l' [(k, l', i) \in A]$ RIGHT-ARC^e $\neg \exists k \exists l'[(k,l',j) \in A]$ REDUCE $\exists k \exists l [(k,l,i) \in A]$

Figure: Transitions for the arc-eager stack-based parsing algorithm.

"

The arc-eager parser differs from the arc-standard one by attaching right dependents (using Right-Arc $_l^e$ transitions) as soon as possible, that is, before the right dependent has found all its right dependents.

As a consequence, the Right-Arc $_l^e$ transitions cannot replace the head-dependent structure with the head, as in the arc-standard system, but must store both the head and the dependent on the stack for further processing. The dependent can be popped from the stack at a later time through the Reduce transition, which completes the reduction of this structure.

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

	σ	β A	
1.	([0],	$[1,\ldots,9],\varnothing$)

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

		σ	β	A
1.	$SHIFT \Longrightarrow ($	[0], [0, 1]	$[1, \dots, 9],$ $[2, \dots, 9],$	Ø) Ø)

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2, \ldots, 9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2=A_1\cup\{(3,\mathtt{SBJ},2)\}$)

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

			σ	eta	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2=A_1\cup\{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	$[4, \ldots, 9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

 $[\mathsf{ROOT}]_0 \ \mathsf{Economic}_1 \ \mathsf{news}_2 \ \mathsf{had}_3 \ \mathsf{little}_4 \ \mathsf{effect}_5 \ \mathsf{on}_6 \ \mathsf{financial}_7 \ \mathsf{markets}_8 \ .9$

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2=A_1\cup\{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	$[4,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	$SHIFT \implies$	([0, 3, 4],	$[5, \ldots, 9],$	A_3)

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

			σ	β		A	
1.		([0],	[1, .	,9],	Ø)
2.	$SHIFT \implies$	([0, 1],	[2, .	$\dots, 9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	[2, .	$\dots, 9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	[3, .	$\dots, 9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	[3, .	$\dots, 9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	[4, .	$\dots, 9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$SHIFT \implies$	([0, 3, 4],	[5, .	$\dots, 9],$	A_3)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	[5,]	, 9],	$A_4 = A_3 \cup \{(5, NMOD, 4)\}$)

Arc-eager stack-based algorithm

			σ	β	A
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \texttt{NMOD}, 1)\}$
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, SBJ, 2)\}$
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_3
8.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0, 3],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \texttt{NMOD}, 4)\})$
9.	Rіght-Arc $_{\mathtt{OBJ}}^{e} \implies$	([0, 3, 5],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, OBJ, 5)\}$

Arc-eager stack-based algorithm

```
NMOD— SBJ—OBJ—NMOD—NMOD—
[ROOT]<sub>0</sub> Economic<sub>1</sub> news<sub>2</sub> had<sub>3</sub> little<sub>4</sub> effect<sub>5</sub> on<sub>6</sub> financial<sub>7</sub> markets<sub>8</sub> .9
```

			σ	β	A	
1.		([0],	$\boxed{[1,\ldots,9],}$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2, \ldots, 9],$	Ø)
3.	$Left ext{-}Arc_{\mathtt{NMOD}} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	$[4,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_3)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	Rіgнт-Arc $_{\mathtt{OBJ}}^{e} \Longrightarrow$	([0, 3, 5],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^e_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \mathtt{NMOD}, 6)\}$)

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	$[4,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_3)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	$Right ext{-}Arc^e_{\mathtt{OBJ}} \implies$	([0, 3, 5],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^e_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \mathtt{NMOD}, 6)\}$)
11.	$SHIFT \implies$	([0, 3, 5, 6, 7],	[8, 9],	A_6)

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0,1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \texttt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, SBJ, 2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_3)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	Rіght-Arc $_{\mathtt{OBJ}}^{e} \Longrightarrow$	([0, 3, 5],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^e_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \texttt{NMOD}, 6)\}$)
11.	$SHIFT \implies$	([0, 3, 5, 6, 7],	[8, 9],	A_6)
12.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3, 5, 6],	[8, 9],	$A_7 = A_6 \cup \{(8, NMOD, 7)\}$)

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	Shift \Longrightarrow	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2, \ldots, 9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_3)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	$Right ext{-}Arc^e_{OBJ} \implies$	([0, 3, 5],	$[6, \ldots, 9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^e_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \mathtt{NMOD}, 6)\}$)
11.	$Shift \implies$	([0, 3, 5, 6, 7],	[8, 9],	A_6)
12.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3, 5, 6],	[8, 9],	$A_7 = A_6 \cup \{(8, \mathtt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^e_{PMOD} \implies$	([0, 3, 5, 6, 8],	[9],	$A_8 = A_7 \cup \{(6, \texttt{PMOD}, 8)\}$)

		σ	β	A	
1.	([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies ($	[0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left\text{-}Arc_{\mathtt{NMOD}} \implies ($	[0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies ($	[0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies ($	[0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies ($	[0, 3],	$[4,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	$SHIFT \implies ($	[0, 3, 4],	$[5,\ldots,9],$	A_3)
8.	$Left\text{-}Arc_{\mathtt{NMOD}} \implies ($	[0, 3],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	$Right ext{-}Arc^e_{\mathtt{OBJ}} \implies ($	[0, 3, 5],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^e_{\mathtt{NMOD}} \implies ($	[0, 3, 5, 6],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \mathtt{NMOD}, 6)\}$)
11.	$SHIFT \implies ($	[0, 3, 5, 6, 7],	[8, 9],	A_6)
12.	$Left\text{-}Arc_{\mathtt{NMOD}} \implies ($	[0, 3, 5, 6],	[8, 9],	$A_7 = A_6 \cup \{(8, \mathtt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^e_{\mathtt{PMOD}} \implies ($	[0, 3, 5, 6, 8],	[9],	$A_8 = A_7 \cup \{(6, \texttt{PMOD}, 8)\}$)
14.	Reduce \Longrightarrow ([0, 3, 5, 6],	[9],	A_8)

2 Stack-based Algorithms

 $\mathsf{Right}\text{-}\mathsf{Arc}^e_{\mathtt{PMOD}} \implies$

Reduce \Longrightarrow

Reduce \Longrightarrow

13.

14.

15.

Illustration Arc-eager transition sequence for English example sentence:

```
OBJ_NMOD_\\\ \rangle NMOD_\\\\ \rangle \rangle
[ROOT]<sub>0</sub> Economic<sub>1</sub> news<sub>2</sub> had<sub>3</sub> little<sub>4</sub> effect<sub>5</sub> on<sub>6</sub> financial<sub>7</sub> markets<sub>8</sub> .9
                                                                                                                                                                                                                                                                                  A
                                                                                                                                                    \sigma
         1.
                                                                                                                                                     [0],
                                                                                                                                                                                                                          [1, \ldots, 9],
                                                                                                                                                                                                                                                                                  Ø
         2.
                                                                                                                                                                                                                          [2, \ldots, 9],
                                                                      Shift \Longrightarrow
                                                                                                                                                     [0, 1],
                                                                                                                                                                                                                                                                                  A_1 = \{(2, NMOD, 1)\}
          3.
                                     \mathsf{Left}	ext{-}\mathsf{Arc}_{\mathsf{NMOD}} \implies
                                                                                                                                                     [0],
                                                                                                                                                                                                                          [2, \ldots, 9],
          4.
                                                                                                                                                     [0, 2],
                                                                                                                                                                                                                          [3, \ldots, 9],
                                                                                                                                                                                                                                                                                  A_1
                                                                       Shift \Longrightarrow
                                                                                                                                                                                                                                                                                 A_2 = A_1 \cup \{(3, SBJ, 2)\}
                                                                                                                                                                                                                          [3, \ldots, 9],
         5.
                                        \mathsf{Left}	ext{-}\mathsf{Arc}_{\mathsf{SBJ}} \implies
                                                                                                                                                     [0],
         6.
                               \mathsf{Right}	ext{-}\mathsf{Arc}^e_{\mathtt{ROOT}} \implies
                                                                                                                                                     [0, 3],
                                                                                                                                                                                                                          [4, \ldots, 9],
                                                                                                                                                                                                                                                                                  A_3 = A_2 \cup \{(0, ROOT, 3)\}
         7.
                                                                                                                                                     [0, 3, 4],
                                                                                                                                                                                                                          [5, \ldots, 9],
                                                                      Shift \Longrightarrow
                                                                                                                                                                                                                          [5,\ldots,9],
         8.
                                                                                                                                                     [0, 3],
                                                                                                                                                                                                                                                                                  A_4 = A_3 \cup \{(5, NMOD, 4)\}
                                    Left-Arc_{NMOD} \implies
                                                                                                                                                                                                                          [6, \ldots, 9],
                                   Right-Arc_{\mathtt{OB,I}}^{e} \Longrightarrow
                                                                                                                                                                                                                                                                                 A_5 = A_4 \cup \{(3, OBJ, 5)\}
         9.
                                                                                                                                                     [0, 3, 5],
                               Right-Arc^e_{nmod} \implies
                                                                                                                                                     [0, 3, 5, 6],
                                                                                                                                                                                                                         [7, 8, 9],
                                                                                                                                                                                                                                                                                 A_6 = A_5 \cup \{(5, NMOD, 6)\}
     10.
   11.
                                                                      Shift \Longrightarrow
                                                                                                                                                    [0, 3, 5, 6, 7],
                                                                                                                                                                                                                         [8, 9],
                                                                                                                                                                                                                                                                                  A_6
   12.
                                     Left-Arc_{NMOD} \implies
                                                                                                                                                    [0, 3, 5, 6],
                                                                                                                                                                                                                          [8, 9],
                                                                                                                                                                                                                                                                                 A_7 = A_6 \cup \{(8, NMOD, 7)\}
```

[9],

[9],

[9],

 $A_8 = A_7 \cup \{(6, PMOD, 8)\}$

 A_8

 A_8

[0, 3, 5, 6, 8],

[0, 3, 5, 6],

[0, 3, 5],

			σ	eta	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0,1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	$[4,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_3)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	Rіght-Arc $_{ t OBJ}^e \Longrightarrow$	([0, 3, 5],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^e_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \mathtt{NMOD}, 6)\}$)
11.	$Shift \implies$	([0, 3, 5, 6, 7],	[8, 9],	A_6)
12.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3, 5, 6],	[8, 9],	$A_7 = A_6 \cup \{(8, \mathtt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^e_{\mathtt{PMOD}} \implies$	([0, 3, 5, 6, 8],	[9],	$A_8 = A_7 \cup \{(6, \texttt{PMOD}, 8)\}$)
14.	Reduce \Longrightarrow	([0, 3, 5, 6],	[9],	A_8)
15.	Reduce \Longrightarrow	([0, 3, 5],	[9],	A_8)
16.	Reduce \Longrightarrow	([0, 3],	[9],	A_8)

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	Shift \Longrightarrow	([0, 1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	Shift \Longrightarrow	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left ext{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2=A_1\cup\{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^e_{\mathtt{ROOT}} \implies$	([0, 3],	$[4,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	Shift \Longrightarrow	([0, 3, 4],	$[5,\ldots,9],$	A_3)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	Rіght-Arc $_{ t OBJ}^e \Longrightarrow$	([0, 3, 5],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^e_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[7, 8, 9],	$A_6=A_5\cup\{(5,\mathtt{NMOD},6)\}$)
11.	Shift \Longrightarrow	([0, 3, 5, 6, 7],	[8, 9],	A_6)
12.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3, 5, 6],	[8, 9],	$A_7 = A_6 \cup \{(8, \mathtt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^e_{\mathtt{PMOD}} \implies$	([0, 3, 5, 6, 8],	[9],	$A_8 = A_7 \cup \{(6, \texttt{PMOD}, 8)\}$)
14.	Reduce \Longrightarrow	([0, 3, 5, 6],	[9],	A_8)
15.	Reduce \Longrightarrow	([0, 3, 5],	[9],	A_8)
16.	Reduce \Longrightarrow	([0, 3],	[9],	A_8)
17.	$Right ext{-}Arc^e_{\mathtt{P}} \implies$	([0, 3, 9],	[],	$A_9 = A_8 \cup \{(3, P, 9)\}$)

			σ	β	A	
1.		([0],	$[1,\ldots,9],$	Ø)
2.	$SHIFT \implies$	([0,1],	$[2,\ldots,9],$	Ø)
3.	$Left ext{-}Arc_{NMOD} \implies$	([0],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$SHIFT \implies$	([0, 2],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc_{\mathtt{SBJ}} \implies$	([0],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	Rіght-Arc $_{ t ROOT}^e \Longrightarrow$	([0, 3],	$[4,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	$SHIFT \implies$	([0, 3, 4],	$[5,\ldots,9],$	A_3)
8.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	Rіснт-Arc $_{\mathtt{OBJ}}^{e} \Longrightarrow$	([0, 3, 5],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^e_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[7, 8, 9],	$A_6=A_5\cup\{(5,\mathtt{NMOD},6)\}$)
11.	$SHIFT \implies$	([0, 3, 5, 6, 7],	[8, 9],	A_6)
12.	$Left ext{-}Arc_{NMOD} \implies$	([0, 3, 5, 6],	[8, 9],	$A_7 = A_6 \cup \{(8, \mathtt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^e_{\mathtt{PMOD}} \implies$	([0, 3, 5, 6, 8],	[9],	$A_8 = A_7 \cup \{(6, \texttt{PMOD}, 8)\}$)
14.	Reduce \Longrightarrow	([0, 3, 5, 6],	[9],	A_8)
15.	Reduce \Longrightarrow	([0, 3, 5],	[9],	A_8)
16.	Reduce \Longrightarrow	([0, 3],	[9],	A_8)
17.	$Right ext{-}Arc^e_{\mathtt{P}} \implies$	([0, 3, 9],	[],	$A_9 = A_8 \cup \{(3, P, 9)\}$)

List-based Algorithms

Definition

A list-based configuration for a sentence $x = (w_0, w_1, \dots, w_n)$ is a quadruple $c = (\lambda_1, \lambda_2, \beta, A)$, where

- 1. λ_1 is a list of tokens $i_1 \leq k_1$ (for some $k_1 \leq n$)
 - will represent as a list with head to right (nodes in decreasing order)
- 2. λ_2 is a list of tokens $i_2 \leq k_2$ (for some k_2 , such that $k_1 < k_2 \leq n$)
 - will represent as a list with head to left (nodes in increasing order)
- 3. β is a buffer of tokens $i > k_2$,
 - will represent as a list with head to left
- 4. A is a set of dependency arcs such that $G = (\{0, 1, \dots, n\}, A)$ is a dependency graph for x.

Write $\lambda_1.\lambda_2$ for the concatenation of lists λ_1 and λ_2 . Ex., [0,1].[2,3,4] = [0,1,2,3,4].

Definition

A list-based transition system is a quadruple $S = (C, T, c_{\text{start}}, C_{\text{terminal}})$, where

- 1. C is the set of all list-based configurations,
- 2. $c_{\text{start}}(x = (w_0, w_1, \dots, w_n)) = ([0], [], [1, \dots, n], \emptyset),$
- 3. T is a set of transitions, each of which is a function $t: C \to C$,
- 4. $C_{\text{terminal}} = \{c \in C \mid c = (\lambda_1, \lambda_2, [], A)\}.$

(Note, only difference from stack-based system is: two lists instead of a single stack)

Transitions LEFT-ARC $_{1}^{n}$ $(\lambda_1|i,\lambda_2,i|\beta,A) \Rightarrow (\lambda_1,i|\lambda_2,i|\beta,A\cup\{(i,l,i)\})$ $(\lambda_1|i,\lambda_2,i|\beta,A) \Rightarrow (\lambda_1,i|\lambda_2,i|\beta,A\cup\{(i,l,i)\})$ RIGHT-ARC n $No-Arc^n$ $(\lambda_1|i,\lambda_2,\beta,A) \Rightarrow (\lambda_1,i|\lambda_2,\beta,A)$ $SHIFT^{\lambda}$ $(\lambda_1, \lambda_2, i | \beta, A) \Rightarrow (\lambda_1, \lambda_2 | i, [], \beta, A)$ Preconditions LEFT-ARC $_{1}^{n}$ $\neg[i=0]$ $\neg \exists k \exists l' [(k, l', i) \in A]$ $\neg[i \rightarrow^* j]_A$ $RIGHT-ARC_{1}^{n}$ $\neg \exists k \exists l'[(k,l',j) \in A]$ $\neg [i \rightarrow^* i]_A$

Figure: Transitions for the arc-eager stack-based parsing algorithm.

The fact that both the head and the dependent are kept in either λ_2 or β makes it possible to construct non-projective dependency graphs, because the No-Arcⁿ transition allows a node to be passed from λ_1 to λ_2 even if it does not (yet) have a head.

Projective list-based algorithm

Illustration Transition sequence for non-projective Czech example sentence:

 $[\mathsf{ROOT}]_0 \ \mathsf{Z}_1 \ \mathsf{nich}_2 \ \mathsf{je}_3 \ \mathsf{jen}_4 \ \mathsf{jedna}_5 \ \mathsf{na}_6 \ \mathsf{kvalitu}_7 \ ._8$

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)

Projective list-based algorithm

 $[\mathsf{ROOT}]_0 \ \mathsf{Z}_1 \ \mathsf{nich}_2 \ \mathsf{je}_3 \ \mathsf{jen}_4 \ \mathsf{jedna}_5 \ \mathsf{na}_6 \ \mathsf{kvalitu}_7 \ ._8$

		λ_1	λ_2	eta	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0,1],	[],	$[2,\ldots,8],$	Ø)

Projective list-based algorithm

$$[\mathsf{ROOT}]_0$$
 Z_1 nich_2 je_3 jen_4 jedna_5 na_6 $\mathsf{kvalitu}_7$.8

			λ_1	λ_2	$oldsymbol{eta}$	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[]	$[2, \ldots, 8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)

Projective list-based algorithm

$$[ROOT]_0$$
 Z_1 $nich_2$ je_3 jen_4 $jedna_5$ na_6 $kvalitu_7$.8

			λ_1	λ_2	$oldsymbol{eta}$	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[]	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \implies$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \Longrightarrow$	([0, 1, 2],	[]	$[3,\ldots,8],$	A_1)

 $[ROOT]_0$ Z_1 nich $_2$ je $_3$ jen $_4$ jedna $_5$ na $_6$ kvalitu $_7$. $_8$

			λ_1	λ_2	β	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \implies$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)

Illustration Transition sequence for non-projective Czech example sentence:

 $[\mathsf{ROOT}]_0 \ \mathsf{Z}_1 \ \mathsf{nich}_2 \ \mathsf{je}_3 \ \mathsf{jen}_4 \ \mathsf{jedna}_5 \ \mathsf{na}_6 \ \mathsf{kvalitu}_7 \ ._8$

			λ_1	λ_2	$oldsymbol{eta}$	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0, 1],	[]	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \implies$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \Longrightarrow$	([0, 1, 2],	[]	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)

			λ_1	λ_2	β	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \implies$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \Longrightarrow$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No\text{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \mathtt{Pred}, 3)$)

Projective list-based algorithm

			λ_1	λ_2	$oldsymbol{eta}$	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \Longrightarrow$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \mathtt{Pred}, 3)$)
8.	$Shift^\lambda \implies$	($[0,\ldots,3],$	[]	$[4,\ldots,8],$	A_2)

			λ_1	λ_2	β	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \Longrightarrow$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3)$)
8.	Shift $^{\lambda} \Longrightarrow$	($[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2)
9.	$Shift^\lambda \Longrightarrow$	($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2)

Projective list-based algorithm

			λ_1	λ_2	eta	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \Longrightarrow$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No\text{-}Arc^n \Longrightarrow$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \mathtt{Pred}, 3)$)
8.	$Shift^\lambda \Longrightarrow$	($[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2)
9.	$Shift^\lambda \implies$	($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2)
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies$	($[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4)$)

Projective list-based algorithm

			λ_1	λ_2	$oldsymbol{eta}$	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \Longrightarrow$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3)$)
8.	$Shift^\lambda \Longrightarrow$	($[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2)
9.	$Shift^\lambda \Longrightarrow$	($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2)
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies$	($[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4)$)
11.	Rіght-Arc $_{\mathtt{Sb}}^{n} \Longrightarrow$	([0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4=A_3\cup(3,\operatorname{Sb},5)$)

Projective list-based algorithm

			λ_1	λ_2	$oldsymbol{eta}$	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \Longrightarrow$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \mathtt{Pred}, 3)$)
8.	$Shift^\lambda \implies$	($[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2)
9.	$Shift^\lambda \Longrightarrow$	($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2)
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies$	($[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3=A_2\cup(5,\mathtt{AuxZ},4)$)
11.	$Right ext{-}Arc^n_{Sb} \implies$	([0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \mathtt{Sb}, 5)$)
12.	$\operatorname{No-Arc}^n \Longrightarrow$	([0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4)

Projective list-based algorithm

			λ_1	λ_2	eta	A
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \implies$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$Shift^\lambda \implies$	($[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \implies$	($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies$	($[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	Rіснт-Arc $_{\mathtt{Sb}}^{n} \Longrightarrow$	([0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No ext{-}Arc^n \implies$	([0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{AuxP}} \implies$	([0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1)$)

Projective list-based algorithm

			λ_1	λ_2	$oldsymbol{eta}$	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)	
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,8],$	Ø)	
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \implies$	([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $	
4.	$Shift^\lambda \Longrightarrow$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1	
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1	
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1	
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$	
8.	$Shift^\lambda \implies$	($[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2	
9.	$Shift^\lambda \implies$	($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2	
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies$	($[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$	
11.	$Right ext{-}Arc^n_{\mathtt{Sb}} \implies$	([0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $	
12.	$No ext{-}Arc^n \implies$	([0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4	
13.	$Left\text{-}Arc^n_{\mathtt{AuxP}} \implies$	([0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$	
14.	$Shift^\lambda \Longrightarrow$	($[0,\ldots,5],$	[],	[6, 7, 8],	A_5	

Projective list-based algorithm

			λ_1	λ_2	eta	A	
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \implies$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3)$)
8.	Shift $^{\lambda} \Longrightarrow$	($[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2)
9.	$Shift^\lambda \implies$	($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2)
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies$	($[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4)$)
11.	$Right ext{-}Arc^n_{\mathtt{Sb}} \implies$	([0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4=A_3\cup(3,\operatorname{Sb},5)$)
12.	$No ext{-}Arc^n \implies$	([0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4)
13.	$Left\text{-}Arc^n_{\mathtt{AuxP}} \implies$	([0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1)$)
14.	$Shift^\lambda \implies$	($[0,\ldots,5],$	[],	[6, 7, 8],	A_5)
15.	$No ext{-}Arc^n \implies$	($[0,\ldots,4],$	[5],	[6, 7, 8],	A_5)

Projective list-based algorithm

			λ_1	λ_2	eta	A
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \implies$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$Shift^\lambda \implies$	($[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \implies$	($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies$	($[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right ext{-}Arc^n_\mathtt{Sb} \implies$	([0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \mathtt{Sb}, 5) \qquad)$
12.	$No ext{-}Arc^n \implies$	([0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{AuxP}} \implies$	([0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1)$)
14.	$Shift^\lambda \implies$	($[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No ext{-}Arc^n \implies$	($[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No ext{-}Arc^n \implies$	($[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5

Projective list-based algorithm

			λ_1	λ_2	β	A
1.		([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$	([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \implies$	([0, 1, 2],	[],	$[3,\ldots,8],$	A_1
5.	$No ext{-}Arc^n \implies$	([0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \Longrightarrow$	([],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$Shift^\lambda \implies$	($[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \implies$	($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies$	($[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right ext{-}Arc^n_\mathtt{Sb} \implies$	([0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No ext{-}Arc^n \implies$	([0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{AuxP}} \implies$	([0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1)$)
14.	$Shift^\lambda \implies$	($[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No ext{-}Arc^n \implies$	($[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No ext{-}Arc^n \implies$	($[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5
17.	$Right ext{-}Arc^n_{\mathtt{AuxP}} \implies$	([0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$

Projective list-based algorithm

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \implies \ ($	[0, 1],	[],	$[2,\ldots,8],$	\varnothing
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow ($	[0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \implies \ ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No ext{-}Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right\text{-}Arc^n_{\mathtt{Sb}} \implies ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No ext{-}Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($	[0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1)$)
14.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No ext{-}Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No ext{-}Arc^n \implies ($	$[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5
17.	$Right\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6=A_5\cup(3,\mathtt{AuxP},6)$)
18.	$Shift^\lambda \implies \ ($	$[0,\ldots,6],$	[],	[7, 8],	A_6

Projective list-based algorithm

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow ($	[0, 1],	[],	$[2,\ldots,8],$	\varnothing
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$ ([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \Longrightarrow ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No-Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No-Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right ext{-}Arc^n_{\mathtt{Sb}} \implies ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No\text{-}Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{AuxP}} \implies ($	[0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1)$)
14.	$Shift^\lambda \implies ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No-Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No-Arc^n \implies ($	$[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5
17.	$Right-Arc^n_{AuxP} \Longrightarrow ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6)$)
18.	$Shift^\lambda \implies ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right ext{-}Arc^n_{\mathtt{Adv}} \Longrightarrow$ ($[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7) \qquad)$

Projective list-based algorithm

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$SHIFT^\lambda \Longrightarrow ($	[0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \implies ($	[0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \Longrightarrow ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No-Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1
6.	$No-Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	A_1
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$SHIFT^\lambda \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$SHIFT^\lambda \Longrightarrow ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right ext{-}Arc^n_{\mathtt{Sb}} \implies ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No\text{-}Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($	[0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$
14.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No-Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No\text{-}Arc^n \Longrightarrow ($		[4, 5],	[6, 7, 8],	A_5
17.	$Right-Arc^n_{AuxP} \Longrightarrow ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$
18.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right-Arc^n_{Adv} \Longrightarrow ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7) \qquad)$
20.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,7],$	[],	[8],	A_7

Projective list-based algorithm

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow ($	[0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$ ([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \implies ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No-Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$SHIFT^\lambda \implies ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right ext{-}Arc^n_{\mathtt{Sb}} \implies ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No\text{-}Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{AuxP}} \implies ($	[0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$
14.	$Shift^\lambda \implies ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No-Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No\text{-}Arc^n \implies ($	$[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5
17.	$Right ext{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$
18.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right ext{-}Arc^n_{\mathtt{Ady}} \implies ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7) \qquad)$
20.	$Shift^\lambda \Longrightarrow \ ($	$[0,\ldots,7],$	[],	[8],	A_7
21.	$No-Arc^n \implies ($	$[0,\ldots,6],$	[7],	[8],	A_7

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow ($	[0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \implies ($	[0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \Longrightarrow ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1
5.	$No-Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1
6.	$No-Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	A_1
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$SHIFT^\lambda \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \implies \ ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right ext{-}Arc^n_\mathtt{Sb} \implies ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	
12.	$No-Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{Aux} \overset{\mathtt{P}}{P}} \implies ($	[0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$
14.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No ext{-}Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No ext{-}Arc^n \implies ($	$[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5
17.	$Right\text{-}Arc^n_{\mathtt{Aux},\mathtt{P}} \implies ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$
18.	$Shift^\lambda \implies \ ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right ext{-}Arc^n_{\mathtt{Adv}} \implies ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7) \qquad)$
20.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,7],$	[],	[8],	A_7
21.	$No ext{-}Arc^n \implies ($	$[0,\ldots,6],$	[7],	[8],	A_7
22.	$No ext{-}Arc^n \implies ($	$[0,\ldots,5],$	[6, 7],	[8],	A_7

Projective list-based algorithm

		λ_1	λ_2	eta	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow ($	[0, 1],	[],	$[2,\ldots,8],$	\varnothing
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$ ([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \implies ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1
5.	$No-Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	A_1
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$Shift^{\lambda} \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \implies ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],		$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right ext{-}Arc^n_{\mathtt{Sb}} \implies ($	[0, 1, 2],	[3, 4],		$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No\text{-}Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{AuxP}} \implies ($	[0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$
14.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5)
15.	$No\text{-}Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No\text{-}Arc^n \implies ($	$[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5
17.	$Right\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$
18.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right ext{-}Arc^n_{\mathtt{Ady}} \Longrightarrow ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7) \qquad)$
20.	$Shift^\lambda \implies ($	$[0,\ldots,7],$	[],	[8],	A_7
21.	$No\text{-}Arc^n \implies ($	$[0,\ldots,6],$	[7],	[8],	A_7
22.	$No\text{-}Arc^n \implies ($	$[0,\ldots,5],$	[6, 7],	[8],	A_7
23.	$No\text{-}Arc^n \implies ($	$[0,\ldots,4],$	[5, 6, 7],	[8],	A_7

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow ($	[0, 1],	[],	$[2,\ldots,8],$	\varnothing
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$ ([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \implies ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1
5.	$No\text{-}Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1
6.	$No ext{-}Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	
7.	$Right\text{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$Shift^{\lambda} \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \implies ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	nuxu	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right ext{-}Arc^n_{\mathtt{Sb}} \implies ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No\text{-}Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	
13.	$Left\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($		$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$
14.	$Shift^\lambda \implies ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No ext{-}Arc^n \implies ($		[5],	[6, 7, 8],	A_5
16.	$No\text{-}Arc^n \Longrightarrow ($		[4, 5],	[6, 7, 8],	A_5
17.	$Right-Arc^n_{AuxP} \Longrightarrow ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$
18.	$Shift^\lambda \implies ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right ext{-}Arc^n_{\mathtt{Adv}} \implies ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, Adv, 7) \qquad)$
20.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,7],$	[],	[8],	A_7
21.	$No ext{-}Arc^n \implies ($	$[0,\ldots,6],$	[7],	[8],	A_7
22.	$No-Arc^n \Longrightarrow ($	$[0,\ldots,5],$	[6, 7],	[8],	A_7
23.	$No-Arc^n \Longrightarrow ($	$[0,\ldots,4],$	[5, 6, 7],	[8],	A_7
24.	$No ext{-}Arc^n \implies ($	$[0,\ldots,3],$	$[4,\ldots,7],$	[8],	A_7

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$SHIFT^\lambda \Longrightarrow ($	[0, 1],	<u> </u>	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$ ([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$SHIFT^\lambda \Longrightarrow ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No-Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No\text{-}Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$SHIFT^{\lambda} \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$SHIFT^\lambda \implies ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$,
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	
11.	$Right-Arc^n_{Sb} \Longrightarrow ($	[0, 1, 2],	[3, 4],		$A_4 = A_3 \cup (3, \mathtt{Sb}, 5) $
12.	$No-Arc^n \implies ($	[0, 1],	[2, 3, 4],		
13.	$Left\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($		$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$
14.	$SHIFT^\lambda \implies ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5)
15.	$No-Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5)
16.	$No-Arc^n \implies ($		[4, 5],	[6, 7, 8],	A_5
17.	$Right-Arc^n_{Aux^p} \Longrightarrow ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$
18.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right ext{-}Arc^n_{\mathtt{Adv}} \implies ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7) \qquad)$
20.	$SHIFT^\lambda \implies ($	$[0,\ldots,7],$	[],	[8],	A_7
21.	$No-Arc^n \implies ($	$[0,\ldots,6],$	[7],	[8],	A_7
22.	$No-Arc^n \Longrightarrow ($		[6, 7],	[8],	A_7
23.	$No-Arc^n \Longrightarrow ($	$[0,\ldots,4],$	[5, 6, 7],	[8],	A_7
24.	$No-Arc^n \Longrightarrow ($	$[0,\ldots,3],$	$[4,\ldots,7],$	[8],	A_7
25.	$No\text{-}Arc^n \implies ($	[0, 1, 2],	$[3,\ldots,7],$	[8],	A_7

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow ($	[0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_\mathtt{Atr} \implies ($	[0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \mathtt{Atr}, 2) $
4.	$Shift^\lambda \Longrightarrow ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1
5.	$No-Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No ext{-}Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	*
7.	$Right\text{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \implies ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	
11.	$Right ext{-}Arc^n_{\mathtt{Sb}} \implies ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No\text{-}Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	
13.	$Left\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($		$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1)$)
14.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No ext{-}Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No ext{-}Arc^n \implies ($	$[0,\ldots,3],$		[6, 7, 8],	A_5)
17.	$Right\text{-}Arc^n_{\mathtt{Aux},\mathtt{P}} \implies ($		[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$
18.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right ext{-}Arc^n_{\mathtt{Adv}} \implies ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7) \qquad)$
20.	$Shift^\lambda \implies ($	$[0,\ldots,7],$	[],	[8],	A_7
21.	$No ext{-}Arc^n \implies ($	$[0,\ldots,6],$	[7],	[8],	A_7
22.	$No-Arc^n \implies ($		[6, 7],	[8],	A_7
23.	$No-Arc^n \implies ($		[5, 6, 7],	[8],	A_7
24.	$No-Arc^n \Longrightarrow ($	$[0,\ldots,3],$	$[4,\ldots,7],$	[8],	A_7
25.	$No-Arc^n \Longrightarrow ($	[0, 1, 2],	$[3,\ldots,7],$	[8],	A_7
26.	$No-Arc^n \implies ($	[0, 1],	$[2,\ldots,7],$	[8],	A_7

		\	١	β	\overline{A}
		λ_1	λ_2	ρ	A
1.	([0],	[],	$[1,\ldots,8],$	\varnothing
2.	$SHIFT^\lambda \Longrightarrow ($	[0, 1],	[],	$[2,\ldots,8],$	\varnothing
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$ ([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$SHIFT^\lambda \Longrightarrow ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1
5.	$No-Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1
6.	$No-Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	A_1
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$SHIFT^{\lambda} \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$,
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	
11.	$Right ext{-}Arc^n_{\mathtt{Sb}} \implies ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No-Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	
13.	$Left\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($	[0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$
14.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No-Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No\text{-}Arc^n \implies ($	$[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5
17.	$Right\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$
18.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right\text{-}Arc^n_{\mathtt{Adv}} \implies ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7) \qquad)$
20.	$Shift^\lambda \implies ($	$[0,\ldots,7],$	[],	[8],	A_7
21.	$No\text{-}Arc^n \implies ($	$[0,\ldots,6],$	[7],	[8],	A_7
22.	$No-Arc^n \implies ($	$[0,\ldots,5],$	[6, 7],	[8],	A_7
23.	$No ext{-}Arc^n \implies ($		[5, 6, 7],	[8],	A_7
24.	$No-Arc^n \implies ($	$[0,\ldots,3],$	$[4,\ldots,7],$	[8],	A_7
25.	$No\text{-}Arc^n \Longrightarrow ($	[0, 1, 2],	$[3,\ldots,7],$	[8],	A_7
26.	$No\text{-}Arc^n \implies ($	[0, 1],	$[2,\ldots,7],$	[8],	A_7
27.	$No\text{-}Arc^n \implies ($	[0],	$[1,\ldots,7],$	[8],	A_7

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow ($	[0, 1],	[],	$[2, \ldots, 8],$	Ø)
3.	$Right ext{-}Arc^n_\mathtt{Atr} \implies ($	[0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$SHIFT^\lambda \Longrightarrow ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1)
5.	$No-Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No-Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \mathtt{Pred}, 3))$
8.	$SHIFT^\lambda \implies ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3 = A_2 \cup (5, \mathtt{AuxZ}, 4))$
11.	$Right-Arc^n_{Sb} \Longrightarrow ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \operatorname{Sb}, 5) $
12.	$No-Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{AuxP}} \implies ($	[0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$
14.	$SHIFT^\lambda \implies ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No ext{-}Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No ext{-}Arc^n \implies ($	$[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5
17.	$Right\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6)$)
18.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right ext{-}Arc^n_{\mathtt{Ady}} \Longrightarrow ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7) \qquad)$
20.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,7],$	[],	[8],	A_7
21.	$No ext{-}Arc^n \implies ($	$[0,\ldots,6],$	[7],	[8],	A_7
22.	$No ext{-}Arc^n \implies ($	$[0,\ldots,5],$	[6, 7],	[8],	A_7
23.	$No ext{-}Arc^n \implies ($	$[0,\ldots,4],$	[5, 6, 7],	[8],	A_7
24.	$No ext{-}Arc^n \implies ($	$[0,\ldots,3],$	$[4,\ldots,7],$	[8],	A_7
25.	$No ext{-}Arc^n \implies ($	[0, 1, 2],	$[3,\ldots,7],$	[8],	A_7
26.	$No ext{-}Arc^n \implies ($	[0, 1],	$[2,\ldots,7],$	[8],	A_7
27.	$No ext{-}Arc^n \implies ($	[0],	$[1,\ldots,7],$	[8],	A_7
28.	$Right ext{-}Arc^n_{\mathtt{AuxK}} \implies ($	[],	$[0,\ldots,7],$	[8],	$A_8 = A_7 \cup (0, \mathtt{AuxK}, 8)$)

		λ_1	λ_2	β	A
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow ($	[0, 1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right\text{-}Arc^n_{\mathtt{Atr}} \Longrightarrow$ ([0],	[1],	$[2,\ldots,8],$	$A_1 = (1, \texttt{Atr}, 2) $
4.	$Shift^\lambda \implies \ ($	[0, 1, 2],	[],	$[3,\ldots,8],$	A_1
5.	$No ext{-}Arc^n \implies ($	[0, 1],	[2],	$[3,\ldots,8],$	A_1
6.	$No ext{-}Arc^n \implies ($	[0],	[1, 2],	$[3,\ldots,8],$	A_1
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies ($	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3))$
8.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2
9.	$Shift^\lambda \implies \ ($	$[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies ($	$[0,\ldots,3],$	[4],	$[5,\ldots,8],$	
11.	$Right\text{-}Arc^n_{\mathtt{Sb}} \implies ($	[0, 1, 2],	[3, 4],	$[5,\ldots,8],$	$A_4 = A_3 \cup (3, \mathtt{Sb}, 5) \qquad)$
12.	$No ext{-}Arc^n \implies ($	[0, 1],	[2, 3, 4],	$[5,\ldots,8],$	A_4
13.	$Left\text{-}Arc^n_{\mathtt{Aux} \mathtt{P}} \implies ($	[0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1))$
14.	$Shift^\lambda \implies \ ($	$[0,\ldots,5],$	[],	[6, 7, 8],	A_5
15.	$No ext{-}Arc^n \implies ($	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5
16.	$No\text{-}Arc^n \Longrightarrow ($	$[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5
17.	$Right\text{-}Arc^n_{\mathtt{Aux}^{\mathbf{p}}} \implies ($	[0, 1, 2],	[3, 4, 5],	[6, 7, 8],	$A_6 = A_5 \cup (3, \mathtt{AuxP}, 6))$
18.	$Shift^\lambda \Longrightarrow ($	$[0,\ldots,6],$	[],	[7, 8],	A_6
19.	$Right ext{-}Arc^n_{\mathtt{Adv}} \implies ($	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, Adv, 7) \qquad)$
20.	$Shift^\lambda \implies \ ($	$[0,\ldots,7],$	[],	[8],	A_7
21.	$No\text{-}Arc^n \Longrightarrow$ ($[0,\ldots,6],$	[7],	[8],	A_7
22.	$No-Arc^n \Longrightarrow ($	$[0,\ldots,5],$	[6, 7],	[8],	A_7
23.	$No-Arc^n \implies ($	$[0,\ldots,4],$	[5, 6, 7],	[8],	A_7
24.	$No-Arc^n \implies ($	$[0,\ldots,3],$	$[4,\ldots,7],$	[8],	A_7
25.	$No-Arc^n \implies ($	[0, 1, 2],	$[3, \ldots, 7],$	[8],	A_7
26.	$No-Arc^n \implies ($	[0,1],	$[2,\ldots,7],$	[8],	A_7
27.	No-Arc ⁿ \Longrightarrow ([0],	$[1, \ldots, 7],$	[8],	A_7)
28.	RIGHT-ARC $_{\text{Aux}K}^n \Longrightarrow ($	[],	$[0,\ldots,7],$	[8],	$A_8 = A_7 \cup (0, \mathtt{AuxK}, 8))$
29.	$SHIFT^\lambda \Longrightarrow ($	$[0,\ldots,8],$	[],	[],	A_8

		λ_1	λ_2	β	A	
1.	([0],	[],	$[1,\ldots,8],$	Ø)
2.	$Shift^\lambda \Longrightarrow$ (([0,1],	[],	$[2,\ldots,8],$	Ø)
3.	$Right ext{-}Arc^n_{\mathtt{Atr}} \implies 0$	([0],	[1],	$[2,\ldots,8],$	$A_1=(1,\mathtt{Atr},2)$)
4.	$Shift^\lambda \Longrightarrow$ ([0,1,2],	[],	$[3,\ldots,8],$	A_1)
5.	$No-Arc^n \implies 0$	([0,1],	[2],	$[3,\ldots,8],$	A_1)
6.	$No-Arc^n \implies 0$	([0],	[1, 2],	$[3,\ldots,8],$	A_1)
7.	$Right ext{-}Arc^n_{\mathtt{Pred}} \implies$	[],	[0, 1, 2],	$[3,\ldots,8],$	$A_2 = A_1 \cup (0, \texttt{Pred}, 3)$)
8.	Shift $^{\lambda} \Longrightarrow$ ($([0,\ldots,3],$	[],	$[4,\ldots,8],$	A_2)
9.	$Shift^\lambda \Longrightarrow$ ($[0,\ldots,4],$	[],	$[5,\ldots,8],$	A_2)
10.	$Left\text{-}Arc^n_{\mathtt{AuxZ}} \implies 0$	$([0,\ldots,3],$	[4],	$[5,\ldots,8],$	$A_3=A_2\cup(5,\mathtt{AuxZ},4)$)
11.	$Right\text{-}Arc^n_{Sb} \Longrightarrow$	[0,1,2],	[3, 4],	$[5,\ldots,8],$	$A_4=A_3\cup(3,\operatorname{Sb},5)$)
12.	$No\text{-}Arc^n \Longrightarrow$	([0,1],	[2, 3, 4],	$[5,\ldots,8],$	A_4)
13.	$Left\text{-}Arc^n_{\mathtt{Aux}\mathtt{P}} \implies 0$	([0],	$[1,\ldots,4],$	$[5,\ldots,8],$	$A_5 = A_4 \cup (5, \mathtt{AuxP}, 1)$)
14.	$Shift^\lambda \Longrightarrow$ ($([0,\ldots,5],$	[],	[6, 7, 8],	A_5)
15.	$No\text{-}Arc^n \Longrightarrow$	$[0,\ldots,4],$	[5],	[6, 7, 8],	A_5)
16.	$No\text{-}Arc^n \Longrightarrow$	$[0,\ldots,3],$	[4, 5],	[6, 7, 8],	A_5)
17.	$Right-Arc^n_{AuxP} \Longrightarrow$	[0,1,2],	[3, 4, 5],	[6, 7, 8],	$A_6=A_5\cup(3,\mathtt{AuxP},6)$)
18.	$Shift^\lambda \Longrightarrow 0$	$[0,\ldots,6],$	[],	[7, 8],	A_6)
19.	$Right ext{-}Arc^n_{\mathtt{Adv}} \Longrightarrow$	$[0,\ldots,5],$	[6],	[7, 8],	$A_7 = A_6 \cup (6, \mathtt{Adv}, 7)$)
20.	Shift $^{\lambda} \Longrightarrow$ ($([0,\ldots,7],$	[],	[8],	A_7)
21.	$No-Arc^n \implies 0$	$([0,\ldots,6],$	[7],	[8],	A_7)
22.	$No-Arc^n \implies 0$	$([0,\ldots,5],$	[6, 7],	[8],	A_7)
23.	$No\text{-}Arc^n \implies 0$	$[0,\ldots,4],$	[5, 6, 7],	[8],	A_7)
24.	$No\text{-}Arc^n \implies 0$	$[0,\ldots,3],$	$[4,\ldots,7],$	[8],	A_7)
25.	$No\text{-}Arc^n \Longrightarrow$	[0, 1, 2],	$[3,\ldots,7],$	[8],	A_7)
26.	$No\text{-}Arc^n \Longrightarrow$	([0,1],	$[2,\ldots,7],$	[8],	A_7)
27.	$No\text{-}Arc^n \Longrightarrow$	[0],	$[1,\ldots,7],$	[8],	A_7)
28.	$Right\text{-}Arc^n_{\mathtt{Aux}^{\c K}} \Longrightarrow$	[],	$[0,\ldots,7],$	[8],	$A_8 = A_7 \cup (0, \mathtt{AuxK}, 8)$)
29.	$Shift^\lambda \Longrightarrow$ ($[0,\ldots,8],$	[],	[],	A_8)

Transitions LEFT-ARC $_{i}^{p}$ $(\lambda_1|i,\lambda_2,i|\beta,A) \Rightarrow (\lambda_1,[],i|\beta,A\cup\{(i,l,i)\})$ RIGHT-ARC^p $(\lambda_1|i,\lambda_2,j|\beta,A) \Rightarrow (\lambda_1|i|j,[],\beta,A\cup\{(i,l,j)\})$ NO-ARC^p $(\lambda_1|i,\lambda_2,\beta,A) \Rightarrow (\lambda_1,i|\lambda_2,\beta,A)$ $SHIFT^{\lambda}$ $(\lambda_1, \lambda_2, i | \beta, A) \Rightarrow (\lambda_1, \lambda_2 | i, [], \beta, A)$ **Preconditions** LEFT-ARC $_{I}^{p}$ $\neg [i = 0]$ $\neg \exists k \exists l' [(k, l', i) \in A]$ RIGHT-ARC₁^p $\neg \exists k \exists l'[(k, l', j) \in A]$ No-Arc^p $\exists k \exists l[(k,l,i) \in A]$

Figure: Transitions for the arc-eager stack-based parsing algorithm.

The projective, list-based parser uses the same basic strategy as its non-projective counterpart, but skips any pair (i, j) that could give rise to a non-projective dependency arc.

Skipping many node pairs makes it more efficient in practice, although the worst-case time complexity remains the same.

Illustration Transition sequence for projective English example sentence (nearly identical to the arc-eager stack-based sequence):

[ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

	λ_1	λ_2	β	A	
1.	([0],	[],	$[1,\ldots,9],$	Ø)

Projective list-based algorithm

Illustration Transition sequence for projective English example sentence (nearly identical to the arc-eager stack-based sequence):

[ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

			λ_1	λ_2	β	A	
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,9],$	Ø	

Illustration Transition sequence for projective English example sentence (nearly identical to the arc-eager stack-based sequence):

-NMOD-[ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

		λ_1	λ_2	β	A	
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0,1],	[],	$[2,\ldots,9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)

—NMOD— [ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

			λ_1	λ_2	β		\overline{A}	
1.		([0],	[],	$[1,\ldots,9]$	9],	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[]	$[2,\ldots,9]$	9],	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9]$	$\theta],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \implies$	([0, 2],	[],	$[3,\ldots,9]$	$\theta],$	A_1)

Illustration Transition sequence for projective English example sentence (nearly identical to the arc-eager stack-based sequence):

NMOD—SBJ [ROOT]₀ Economic₁ news₂ had₃ little₄ effect₅ on₆ financial₇ markets₈ .₉

			λ_1)	β		A	
1.		([0],		, [1	$,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],		, [2	$,\ldots,9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],		, [2	$,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \implies$	([0, 2],		, [3	$,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],		, [3	$,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)

Projective list-based algorithm

			λ_1		λ_2	β	A	
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0, 1],	[],	$[2, \ldots, 9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \Longrightarrow$	([0, 2],],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$Right\text{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0, 3],	[],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)

			λ_1	λ	β		A	
1.		([0],	[]	, [1	$[0,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],		, [2	$[2,\ldots,9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[]	, [2	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \implies$	([0, 2],		, [3	$[8,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[]	, [3	$[8,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$Right\text{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0, 3],	[]	, [4	$[1,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	$Shift^\lambda \implies$	([0, 3, 4],		, [5	$[5,\ldots,9],$	A_3)

Projective list-based algorithm

			λ_1	λ_2	$oldsymbol{eta}$	A	
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[]	$[2,\ldots,9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \implies$	([0, 2],	[]	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[],		$A_2=A_1\cup\{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0, 3],	[],	$[4,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	$Shift^\lambda \implies$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3)
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3],	[],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)

			λ_1	λ_2	β	A	
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	Π,	$[2, \ldots, 9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \Longrightarrow$	([0, 2],	[],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	$[\bar{\ }],$	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, \mathtt{SBJ}, 2)\}$)
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \implies$	([0, 3],	[],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$Shift^\lambda \implies$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3)
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3],	[],	$[5,\ldots,9],$	$A_4=A_3\cup\{(5,\mathtt{NMOD},4)\}$)
9.	$Right ext{-}Arc^p_{\mathtt{OBJ}} \implies$	([0, 3, 5],	[],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)

			λ_1	λ_2	β	A	
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0, 1],	[],	$[2,\ldots,9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[]	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \Longrightarrow$	([0, 2],	[],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[]	$[3,\ldots,9],$	$A_2=A_1\cup\{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0, 3],	[],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$Shift^\lambda \implies$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3)
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$			[],		$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	$Right ext{-}Arc^p_{\mathtt{OBJ}} \Longrightarrow$	([0, 3, 5],	[],		$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[7, 8, 9],	$A_6=A_5\cup\{(5,\mathtt{NMOD},6)\}$)

Non-projective list-based algorithm

Projective list-based algorithm

			λ_1	λ_2	β	A	
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2, \ldots, 9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \implies$	([0, 2],	[],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[]	$[3,\ldots,9],$	$A_2=A_1\cup\{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0, 3],	[]	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$Shift^\lambda \implies$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3)
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3],	[]	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	$Right ext{-}Arc^p_{\mathtt{OBJ}} \implies$	([0, 3, 5],	[]	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[]	[7, 8, 9],	$A_6=A_5\cup\{(5,\mathtt{NMOD},6)\}$)
11.	$Shift^\lambda \implies$	([0, 3, 5, 6, 7],	[],	[8, 9],	A_6)

Non-projective list-based algorithm

Projective list-based algorithm

	30	_					
			λ_1	λ_2	β	A	
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0, 1],	[],	$[2, \ldots, 9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[]	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \implies$	([0, 2],	[],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0, 3],	[],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$Shift^\lambda \implies$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3)
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3],	[],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	$Right ext{-}Arc^p_{\mathtt{OBJ}} \implies$	([0, 3, 5],	[],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \mathtt{NMOD}, 6)\}$)
11.	$Shift^\lambda \implies$	([0, 3, 5, 6, 7],	[],	[8, 9],	A_6)
12.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[8, 9],	$A_7 = A_6 \cup \{(8, \mathtt{NMOD}, 7)\}$)

Non-projective list-based algorithm

Projective list-based algorithm

Γ,	te e 1] Lee norme			4	000	marretary marriets, ig
			λ_1	λ_2	β	A
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0,1],	[],	$[2, \ldots, 9],$	\varnothing
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \texttt{NMOD}, 1)\} $
4.	$Shift^\lambda \Longrightarrow$	([0, 2],	[]	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, SBJ, 2)\}$
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \implies$	([0, 3],	[],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$
7.	$Shift^\lambda \implies$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0,3],	[],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\})$
9.	$Right ext{-}Arc^p_{OBJ} \implies$	([0, 3, 5],	[],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\} $
10.	$Right ext{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \texttt{NMOD}, 6)\})$
11.	$Shift^\lambda \implies$	([0, 3, 5, 6, 7],	[]	[8, 9],	A_6
12.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[8, 9],	$A_7 = A_6 \cup \{(8, \texttt{NMOD}, 7)\} $
13.	$Right ext{-}Arc^p_{\mathtt{PMOD}} \implies$	([0, 3, 5, 6, 8],	[],	[9],	$A_8 = A_7 \cup \{(6, PMOD, 8)\}$)

		λ_1	λ_2	eta	A
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0,1],	[],	$[2, \ldots, 9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \texttt{NMOD}, 1)\}$
4.	$Shift^\lambda \Longrightarrow$	([0,2],	[],	$[3,\ldots,9],$	A_1
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, SBJ, 2)\}$
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0,3],	[],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$
7.	$Shift^\lambda \Longrightarrow$	([0,3,4]	, [],	$[5,\ldots,9],$	A_3
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0,3],	[],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, NMOD, 4)\}$
9.	$Right\text{-}Arc^p_{OBJ} \implies$	([0,3,5]	, $[]$,	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, OBJ, 5)\} $
10.	$Right ext{-}Arc^p_{\mathtt{NMOD}} \Longrightarrow$	([0,3,5,	[6],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \texttt{NMOD}, 6)\})$
11.	$Shift^\lambda \implies$	([0,3,5,	[6,7], [],	[8, 9],	A_6
12.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0,3,5,	6], [],	[8, 9],	$A_7 = A_6 \cup \{(8, NMOD, 7)\}$
13.	$Right ext{-}Arc^p_{\mathtt{PMOD}} \implies$	([0,3,5,	[6, 8], [],	[9],	$A_8 = A_7 \cup \{(6, PMOD, 8)\}$
14.	$No ext{-}Arc^p \implies$	([0,3,5,	6], [8],	[9],	A_8

Projective list-based algorithm

	COOTING Leonomics	•••	ews ₂ maa ₃ r	rttic4 Circ	5ct ₅ 0H ₆ H	Harretary markets8 .g
			λ_1	λ_2	β	A
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \Longrightarrow$	([0,1],	[],	$[2, \ldots, 9],$	\varnothing)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \texttt{NMOD}, 1)\}$
4.	$Shift^\lambda \implies$	([0, 2],	[],	$[3,\ldots,9],$	A_1
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, SBJ, 2)\}$
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \implies$	([0, 3],	[],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$Shift^\lambda \implies$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3],	[],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\})$
9.	$Right ext{-}Arc^p_{\mathtt{OBJ}} \implies$	([0, 3, 5],	[],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, OBJ, 5)\} $
10.	$Right ext{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \texttt{NMOD}, 6)\})$
11.	$Shift^\lambda \implies$	([0, 3, 5, 6, 7],	[],	[8, 9],	A_6
12.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[8, 9],	$A_7 = A_6 \cup \{(8, \texttt{NMOD}, 7)\})$
13.	$Right ext{-}Arc^p_{\mathtt{PMOD}} \implies$	([0, 3, 5, 6, 8],	[],	[9],	$A_8 = A_7 \cup \{(6, \texttt{PMOD}, 8)\})$
14.	$No ext{-}Arc^p \implies$	([0, 3, 5, 6],	[8],	[9],	A_8
15.	$No ext{-}arc^p \implies$	([0, 3, 5],	[6, 8],	[9],	A_8

Г.	toorju Leononne		ews ₂ maa ₃ i	recie ₄ en		marietary markets8 .g
			λ_1	λ_2	β	A
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2, \ldots, 9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \texttt{NMOD}, 1)\} $
4.	$Shift^\lambda \Longrightarrow$	([0, 2],	[],	$[3, \ldots, 9],$	A_1
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[]	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3, SBJ, 2)\}$
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0, 3],	[],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, ROOT, 3)\}$
7.	$Shift^\lambda \Longrightarrow$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0,3],	[],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \texttt{NMOD}, 4)\})$
9.	$Right ext{-}Arc^p_{\mathtt{OBJ}} \implies$	([0, 3, 5],	[],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\} $
10.	$Right ext{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \texttt{NMOD}, 6)\})$
11.	Shift $^{\lambda} \Longrightarrow$	([0, 3, 5, 6, 7],	[],	[8, 9],	A_6
12.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[8, 9],	$A_7 = A_6 \cup \{(8, \texttt{NMOD}, 7)\})$
13.	$Right ext{-}Arc^p_{\mathtt{PMOD}} \implies$	([0, 3, 5, 6, 8],	[],	[9],	$A_8 = A_7 \cup \{(6, \texttt{PMOD}, 8)\})$
14.	$No ext{-}Arc^p \implies$	([0, 3, 5, 6],	[8],	[9],	A_8
15.	$No ext{-}arc^p \implies$	([0, 3, 5],	[6, 8],	[9],	A_8
16.	$No ext{-}arc^p \implies$	([0, 3],	[5, 6, 8],	[9],	A_8

			λ_1	λ_2	β	A	
1.	(([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \texttt{NMOD}, 1)\}$)
4.	$Shift^\lambda \Longrightarrow$	([0, 2],	[],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[],	$[3,\ldots,9],$	$A_2 = A_1 \cup \{(3,\mathtt{SBJ},2)\}$)
6.	$Right\text{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0, 3],	[],	$[4,\ldots,9],$	$A_3 = A_2 \cup \{(0, \mathtt{ROOT}, 3)\}$)
7.	$Shift^\lambda \implies$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3)
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3],	[],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \texttt{NMOD}, 4)\}$)
9.	$Right ext{-}Arc^p_{\mathtt{OBJ}} \implies$	([0, 3, 5],	[],	$[6,\ldots,9],$	$A_5 = A_4 \cup \{(3, \mathtt{OBJ}, 5)\}$)
10.	$Right ext{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[7, 8, 9],	$A_6 = A_5 \cup \{(5, \mathtt{NMOD}, 6)\}$)
11.	$Shift^\lambda \implies$	([0, 3, 5, 6, 7],	[],	[8, 9],	A_6)
12.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[8, 9],	$A_7 = A_6 \cup \{(8, \mathtt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^p_{\mathtt{PMOD}} \implies$	([0, 3, 5, 6, 8],	[],	[9],	$A_8 = A_7 \cup \{(6, \texttt{PMOD}, 8)\}$)
14.	$No ext{-}Arc^p \implies$	([0, 3, 5, 6],	[8],	[9],	A_8)
15.	$No ext{-}arc^p \implies$	([0, 3, 5],	[6, 8],	[9],	A_8)
16.	$No ext{-}arc^p \implies$	([0, 3],	[5, 6, 8],	[9],	A_8)
17.	$Right ext{-}Arc^p_{\mathtt{P}} \implies$	([0, 3, 9],	[],	[],	$A_9 = A_8 \cup \{(3, P, 9)\}$)

			λ_1	λ_2	eta	A	
1.		([0],	[],	$[1,\ldots,9],$	Ø)
2.	$Shift^\lambda \implies$	([0, 1],	[],	$[2,\ldots,9],$	Ø)
3.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0],	[],	$[2,\ldots,9],$	$A_1 = \{(2, \mathtt{NMOD}, 1)\}$)
4.	$Shift^\lambda \implies$	([0, 2],	[],	$[3,\ldots,9],$	A_1)
5.	$Left\text{-}Arc^p_{\mathtt{SBJ}} \implies$	([0],	[],	$[3,\ldots,9],$	$A_2=A_1\cup\{(3,\mathtt{SBJ},2)\}$)
6.	$Right ext{-}Arc^p_{\mathtt{ROOT}} \Longrightarrow$	([0, 3],	[],	$[4,\ldots,9],$	$A_3=A_2\cup\{(0,\mathtt{ROOT},3)\}$)
7.	$Shift^\lambda \implies$	([0, 3, 4],	[],	$[5,\ldots,9],$	A_3)
8.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3],	[],	$[5,\ldots,9],$	$A_4 = A_3 \cup \{(5, \mathtt{NMOD}, 4)\}$)
9.	Right-Arc $_{\mathtt{OBJ}}^{p} \Longrightarrow$	([0, 3, 5],	[],	$[6,\ldots,9],$)
10.	$Right ext{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[7, 8, 9],	$A_6=A_5\cup\{(5,\mathtt{NMOD},6)\}$)
11.	$Shift^\lambda \implies$	([0, 3, 5, 6, 7],	[],	[8, 9],	A_6)
12.	$Left\text{-}Arc^p_{\mathtt{NMOD}} \implies$	([0, 3, 5, 6],	[],	[8, 9],	$A_7 = A_6 \cup \{(8, \mathtt{NMOD}, 7)\}$)
13.	$Right ext{-}Arc^p_{\mathtt{PMOD}} \implies$	([0, 3, 5, 6, 8],	[],	[9],	$A_8 = A_7 \cup \{(6, \texttt{PMOD}, 8)\}$)
14.	$No ext{-}Arc^p \implies$	([0, 3, 5, 6],	[8],	[9],	A_8)
15.		([0, 3, 5],	[6, 8],	[9],	A_8)
16.	$No\text{-}arc^p \Longrightarrow$	([0,3],	[5, 6, 8],	[9],	A_8)
17.	$Right\text{-}Arc^p_{\mathtt{P}} \implies$	([0, 3, 9],	[],	[],	$A_9 = A_8 \cup \{(3, P, 9)\}$)

Evaluation of the four algorithms in deterministic data-driven parsing: Use an oracle approximated by a classifier trained on treebank data to analyze of the accuracy and efficiency of these systems.

■ Data: CoNLL-X shared task multilingual dependency parsing

Evaluation of the four algorithms in deterministic data-driven parsing: Use an oracle approximated by a classifier trained on treebank data to analyze of the accuracy and efficiency of these systems.

■ Data: CoNLL-X shared task multilingual dependency parsing

Data sets. Tok = number of tokens (\times 1000); Sen = number of sentences (\times 1000); T/S = tokens per sentence (mean); Lem = lemmatization present; CPoS = number of coarse-grained part-of-speech tags; PoS = number of (fine-grained) part-of-speech tags; MSF = number of morphosyntactic features (split into atoms); Dep = number of dependency types; NPT = proportion of non-projective dependencies/tokens (%); NPS = proportion of non-projective dependency graphs/sentences (%).

Language	Tok	Sen	T/S	Lem	CPoS	PoS	MSF	Dep	NPT	NPS
Arabic	54	1.5	37.2	yes	14	19	19	27	0.4	11.2
Bulgarian	190	14.4	14.8	no	11	53	50	18	0.4	5.4
Chinese	337	57.0	5.9	no	22	303	0	82	0.0	0.0
Czech	1,249	72.7	17.2	yes	12	63	61	78	1.9	23.2
Danish	94	5.2	18.2	no	10	24	47	52	1.0	15.6
Dutch	195	13.3	14.6	yes	13	302	81	26	5.4	36.4
German	700	39.2	17.8	no	52	52	0	46	2.3	27.8
Japanese	151	17.0	8.9	no	20	77	0	7	1.1	5.3
Portuguese	207	9.1	22.8	yes	15	21	146	55	1.3	18.9
Slovene	29	1.5	18.7	yes	11	28	51	25	1.9	22.2
Spanish	89	3.3	27.0	yes	15	38	33	21	0.1	1.7
Swedish	191	11.0	17.3	no	37	37	0	56	1.0	9.8
Turkish	58	5.0	11.5	yes	14	30	82	25	1.5	11.6

Figure: Data sets

Learning and parsing time for seven parsers on six languages, measured in seconds. NP-L = non-projective list-based; P-L = projective list-based; PP-L = pseudo-projective list-based; P-E = projective arc-eager stack-based; PP-E = pseudo-projective arc-eager stack-based; P-S = projective arc-standard stack-based; PP-S = pseudo-projective arc-standard stack-based.

	Learning Time									
Language	NP-L	P-L	PP-L	P-E	PP-E	P-S	PP-S			
Arabic	1,814	614	603	650	647	1,639	1,636			
Bulgarian	6,796	2,918	2,926	2,919	2,939	3,321	3,391			
Chinese	17,034	13,019	13,019	13,029	13,029	13,705	13,705			
Czech	546,880	250,560	248,511	279,586	280,069	407,673	406,857			
Danish	2,964	1,248	1,260	1,246	1,262	643	647			
Dutch	7,701	3,039	2,966	3,055	2,965	7,000	6,812			
German	48,699	16,874	17,600	16,899	17,601	24,402	24,705			
Japanese	211	191	188	203	208	199	199			
Portuguese	25,621	8,433	8,336	8,436	8,335	7,724	7,731			
Slovene	167	78	90	93	99	86	90			
Spanish	1,999	562	566	565	565	960	959			
Swedish	2,410	942	1,020	945	1,022	1,350	1,402			
Turkish	720	498	519	504	516	515	527			
Average	105,713	46,849	46,616	51,695	51,876	74,798	74,691			
Parsing Time										

	Parsing 11me								
Language	NP-L	P-L	PP-L	P-E	PP-E	P-S	PP-S		
Arabic	213	103	131	108	135	196	243		
Bulgarian	139	93	102	93	103	135	147		
Chinese	1,008	855	855	855	855	803	803		
Czech	5,244	3,043	5,889	3,460	6,701	3,874	7,437		
Danish	109	66	83	66	83	82	106		
Dutch	349	209	362	211	363	253	405		
German	781	456	947	455	945	494	1,004		
Japanese	10	8	8	9	10	7	7		
Portuguese	670	298	494	298	493	437	717		
Slovene	69	44	62	47	65	43	64		
Spanish	133	67	75	67	75	80	91		
Swedish	286	202	391	201	391	242	456		
Turkish	218	162	398	162	403	153	380		
Average	1,240	712	1,361	782	1,496	897	1,688		

Figure: Parsing efficiency

Nivre, Joakim (Dec. 1, 2008). "Algorithms for Deterministic Incremental Dependency Parsing". In: Computational Linguistics 34.4, pp. 513–553. DOI: 10.1162/coli.07-056-R1-07-027.