Deterministic Incremental Dependency Parsing

Animated illustration of algorithms presented in Nivre, 2008

Jacob Louis Hoover

April, 2021

1/16

Outline:

1. Preliminaries
1.1 Dependency structures
1.2 Incremental dependency parsing

2. Stack-based Algorithms
2.1 Arc-standard stack-based algorithm
2.2 Arc-eager stack-based algorithm

3. List-based Algorithms
3.1 Non-projective list-based algorithm
3.2 Projective list-based algorithm

4. Experimental Evaluation

2/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Dependency structures:

m A projective English dependency tree from the Penn Treebank (converted to
dependency parse with Nivre’s Penn2Malt).

ROOT ‘ P
/ FNMUD—\ FSBJ—\\ ?(B—JNMOD—\S /-NMDD\ / ;@NMOD—\S \

[ROOT]y Economic; newss, hads little, effect; ong financial; marketsg .9

m A non-projective Czech dependency tree from the Prague Dependency
Treebank.

AuxP

-AuxK:
[{ pred Auxp-) \(
%—————Sb———f::t
l /—Atr—\ \ FAuxZ X /—Adv—\
[ROOT]yp Z; nichy jes jeny jednas nag kvalitu; .g
Out-of them is only one-FEM-sG to quality

(“Only one of them concerns quality.”)

3/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Dependency structures:

m A projective English dependency tree from the Penn Treebank (converted to
dependency parse with Nivre’s Penn2Malt).

ROOT ‘ P
/ FNMUD—\ FSBJ—\\ ?(B—JNMOD—\S /-NMDD\ / ;@NMOD—\S \

[ROOT]y Economic; newss, hads little, effect; ong financial; marketsg .9

m A non-projective Czech dependency tree from the Prague Dependency
Treebank.

-AuxK:

{Pred - = Auxp-)
l /—Atr—\ \ ’ FAUXZ:‘SS X /—Adv—\

[ROOT]yp Z; nichy jes jeny jednas nag kvalitu; .g
Out-of them is only one-FEM-sG to quality

(“Only one of them concerns quality.”)

Formally
m define dependency graph G = (V, A)

3/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Dependency structures:

m A projective English dependency tree from the Penn Treebank (converted to
dependency parse with Nivre’s Penn2Malt).

ROOT ‘ P
/ FNMUD—\ FSBJ—\\ ?(B—JNMOD—\S /-NMDD\ / ;@NMOD—\S \

[ROOT]y Economic; newss, hads little, effect; ong financial; marketsg .9

m A non-projective Czech dependency tree from the Prague Dependency
Treebank.

-AuxK:

{Pred - = Auxp-)
l /—Atr—\ \ ’ FAUXZ:‘SS X /—Adv—\

[ROOT]yp Z; nichy jes jeny jednas nag kvalitu; .g
Out-of them is only one-FEM-sG to quality

(“Only one of them concerns quality.”)

Formally
m define dependency graph G = (V, A)
BV ={1,...,n} set of nodes

3/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Dependency structures:

m A projective English dependency tree from the Penn Treebank (converted to
dependency parse with Nivre’s Penn2Malt).

ROOT ‘ P
/ FNMUD—\ FSBJ—\\ ?(B—JNMOD—\S /-NMDD-\ / ;@NMOD—\S \

[ROOT]y Economic; newss, hads little, effect; ong financial; marketsg .9

m A non-projective Czech dependency tree from the Prague Dependency
Treebank.

-AuxK:

{Pred - = Auxp-)
l /—Atr—\ \ ’ FAUXZ:‘SS X /—Adv—\

[ROOT]yp Z; nichy jes jeny jednas nag kvalitu; .g
Out-of them is only one-FEM-sG to quality

(“Only one of them concerns quality.”)

Formally
m define dependency graph G = (V, A)

BV ={1,...,n} set of nodes
m A=V x L xV setof labeled directed arcs

3/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Dependency structures:

m A projective English dependency tree from the Penn Treebank (converted to
dependency parse with Nivre’s Penn2Malt).

ROOT ‘ P
/ FNMUD—\ FSBJ—\\ ?(B—JNMOD—\S /-NMDD-\ / ;@NMOD—\S \

[ROOT]y Economic; newss, hads little, effect; ong financial; marketsg .9

m A non-projective Czech dependency tree from the Prague Dependency
Treebank.

-AuxK:

{Pred - = Auxp-)
l /—Atr—\ \ ’ FAUXZ:‘SS X /—Adv—\

[ROOT]yp Z; nichy jes jeny jednas nag kvalitu; .g
Out-of them is only one-FEM-sG to quality

(“Only one of them concerns quality.”)

Formally
m define dependency graph G = (V, A)

BV ={1,...,n} set of nodes
m A=V x L xV setof labeled directed arcs

m define notion of well-formedness

3/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Dependency structures:

m A projective English dependency tree from the Penn Treebank (converted to
dependency parse with Nivre’s Penn2Malt).

ROOT ‘ P
/ FNMUD—\ FSBJ—\\ ?(B—JNMOD—\S /-NMDD-\ / ;@NMOD—\S \

[ROOT]y Economic; newss, hads little, effect; ong financial; marketsg .9

m A non-projective Czech dependency tree from the Prague Dependency
Treebank.

AuxP

-AuxK:
[{ pred Auxp-) \(
%—————Sb———f::t
l /—Atr—\ \ FAuxZ X /—Adv—\
[ROOT]yp Z; nichy jes jeny jednas nag kvalitu; .g
Out-of them is only one-FEM-sG to quality

(“Only one of them concerns quality.”)

Formally
m define dependency graph G = (V, A)

BV ={1,...,n} set of nodes
m A=V x L xV setof labeled directed arcs

m define notion of well-formedness
m by properties RooT, SINGLE-HEAD, and AcycLicITy

3/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Dependency structures:

m A projective English dependency tree from the Penn Treebank (converted to
dependency parse with Nivre’s Penn2Malt).

ROOT ‘ P
/ FNMUD—\ FSBJ—\\ ?(B—JNMOD—\S /-NMDD-\ / ;@NMOD—\S \

[ROOT]y Economic; newss, hads little, effect; ong financial; marketsg .9

m A non-projective Czech dependency tree from the Prague Dependency
Treebank.

AuxP

-AuxK:
[{ pred Auxp-) \(
%—————Sb———f::t
l /—Atr—\ \ FAuxZ X /—Adv—\
[ROOT]yp Z; nichy jes jeny jednas nag kvalitu; .g
Out-of them is only one-FEM-sG to quality

(“Only one of them concerns quality.”)

Formally
m define dependency graph G = (V, A)

BV ={1,...,n} set of nodes
m A=V x L xV setof labeled directed arcs

m define notion of well-formedness
m by properties RooT, SINGLE-HEAD, and AcycLicITy
m define property projectivity

3/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Dependency structures:

m A projective English dependency tree from the Penn Treebank (converted to
dependency parse with Nivre’s Penn2Malt).

ROOT ‘ P
/ FNMUD—\ FSBJ—\\ ?(B—JNMOD—\S /-NMDD-\ / ;@NMOD—\S \

[ROOT]y Economic; newss, hads little, effect; ong financial; marketsg .9

m A non-projective Czech dependency tree from the Prague Dependency
Treebank.

AuxP

-AuxK:
[{ pred Auxp-) \(
%—————Sb———f::t
l /—Atr—\ \ FAuxZ X /—Adv—\
[ROOT]yp Z; nichy jes jeny jednas nag kvalitu; .g
Out-of them is only one-FEM-sG to quality

(“Only one of them concerns quality.”)

Formally
m define dependency graph G = (V, A)

BV ={1,...,n} set of nodes
m A=V x L xV setof labeled directed arcs

m define notion of well-formedness
m by properties RooT, SINGLE-HEAD, and AcycLicITy
m define property projectivity
m there exists a path from the head of an arc to any node inside the span of the arc

3/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)
m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)
m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of

dependency arcs,
m T aset of transitionst : C — C,

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)
m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,
m T aset of transitionst : C — C,

B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)

m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,

m T aset of transitionst : C — C,

B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],
B Chierminal C C a set of terminal configurations.

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)

m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,

m T aset of transitionst : C — C,

B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],
B Chierminal C C a set of terminal configurations.

m transition sequence (derivation): a series of transitions through configurations,
starting in a start configuration,

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)
m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,
m T aset of transitionst : C — C,
B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],
B Chierminal C C a set of terminal configurations.
m transition sequence (derivation): a series of transitions through configurations,
starting in a start configuration,
® incrementality

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)
m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,
m T aset of transitionst : C — C,
B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],
B Chierminal C C a set of terminal configurations.
m transition sequence (derivation): a series of transitions through configurations,
starting in a start configuration,
® incrementality

m buffer always decreasing in size, and derivation is over when empty

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:

transition system S = (C, T, cs, Cy)

m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,

m T aset of transitionst : C — C,

B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration

with 8 =[1,...,n],
B Chierminal C C a set of terminal configurations.
transition sequence (derivation): a series of transitions through configurations,
starting in a start configuration,
incrementality

m buffer always decreasing in size, and derivation is over when empty
® once an arc is added to A, it is never removed

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)

m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,
m T aset of transitionst : C — C,

B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],

B Chierminal C C a set of terminal configurations.

m transition sequence (derivation): a series of transitions through configurations,
starting in a start configuration,

® incrementality
m buffer always decreasing in size, and derivation is over when empty
® once an arc is added to A, it is never removed

m correctness of an algorithm (soundness and completeness) for a class of
dependency graphs

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)
m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,
m T aset of transitionst : C — C,
B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],
B Chierminal C C a set of terminal configurations.
m transition sequence (derivation): a series of transitions through configurations,
starting in a start configuration,
® incrementality
m buffer always decreasing in size, and derivation is over when empty
® once an arc is added to A, it is never removed
m correctness of an algorithm (soundness and completeness) for a class of
dependency graphs
m an oracle

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)
m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,
m T aset of transitionst : C — C,
B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],
B Chierminal C C a set of terminal configurations.
m transition sequence (derivation): a series of transitions through configurations,
starting in a start configuration,
® incrementality
m buffer always decreasing in size, and derivation is over when empty
® once an arc is added to A, it is never removed
m correctness of an algorithm (soundness and completeness) for a class of
dependency graphs
m an oracle

m for a transition system S, an oracle is a function o : C' — T specifying which transition to
take for any given configuration

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, ¢, Ct)
m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,
m T aset of transitionst : C — C,
B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],
B Chierminal C C a set of terminal configurations.
m transition sequence (derivation): a series of transitions through configurations,
starting in a start configuration,
® incrementality
m buffer always decreasing in size, and derivation is over when empty
® once an arc is added to A, it is never removed
m correctness of an algorithm (soundness and completeness) for a class of
dependency graphs
m an oracle

m for a transition system S, an oracle is a function o : C' — T specifying which transition to
take for any given configuration

PARSE(z = (wo, ..., wy))
1 ¢ cs(x)
22 while ¢ ¢ C; do
3: ¢« [o(0)](e)
4 end while
5: return G,

4/16

1 Preliminaries

Dependency structures Incremental dependency parsing

Common formalization incremental dependency parsing algorithms:
m transition system S = (C, T, cs, Cy)
m C aset of configurations, each containing a buffer 3 of (remaining) nodes and a set A of
dependency arcs,
m T aset of transitionst : C — C,
B Cyart an initialization function, mapping a sentence z = (wg, w1, - . ., wy,) to a configuration
with 8 =[1,...,n],
B Chierminal C C a set of terminal configurations.
m transition sequence (derivation): a series of transitions through configurations,
starting in a start configuration,
® incrementality
m buffer always decreasing in size, and derivation is over when empty
® once an arc is added to A, it is never removed
m correctness of an algorithm (soundness and completeness) for a class of
dependency graphs
m an oracle

m for a transition system S, an oracle is a function o : C' — T specifying which transition to
take for any given configuration

PARSE(z = (wo, ..., wy))

18

¢ cs(7)
while ¢ ¢ C; do
c < [o(c)](c)
end while
return G,

m Stack-based Algorithms (for projective structures)
m arc-standard

B arc-eager

List-based Algorithms

® non-projective

m projective

4/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Stack-based Algorithms

Definition
A stack-based configuration for a sentence = = (wp, w1, ..., wy,) is a triple
¢ = (o,p,A), where
1. o is a stack of tokens i < k (for some k < n) < will represent as a list with head to right

2. B is a buffer of tokens j > k, < will represent as a list with head to left
3. Ais a set of dependency arcs such that G = ({0,1,...,n}, A) is a dependency
graph for x.

A stack-based transition system is a quadruple S = (C, T, cstart, Cterminal)» Where
1. C'is the set of all stack-based configurations,
2. Cstart (T = (wo, w1, ..., wy)) = ([0],[1,...,n],),
3. T is a set of transitions, each of which is a functiont : C' — C,
4. Cterminal = {c € C' | ¢ = (0, [}, A)}.

5/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Arc-standard stack-based algorithm

Transitions
LEFT-ARC; (oli,jIB,A) = (0,jIB, AU{(j Li)})
RIGHT-ARC; (0]i,jIB,A) = (0,iB, AU{(i,L,))})

SHIFT (0,1|B,A) = (oli, B, A)
Preconditions
LEFT-ARC; =[i = 0]

IV, 1, i) € A]
RIGHT-ARCS ~FKA[(k I',j) € A]

Figure: Transitions for the arc-standard stack-based parsing algorithm.

The arc-standard parser is the closest correspondent to the familiar shift-reduce
parser for context-free grammars (Aho, Sethi, and Ullman 1986).

The LEFT-ARc; and RIGHT-ARC] transitions correspond to reduce actions, replacing a
head-dependent structure with its head, whereas the SHIFT transition is exactly the
same as the shift action.

One peculiarity of the transitions, as defined here, is that the “reduce” transitions
apply to one node on the stack and one node in the buffer, rather than two nodes
on the stack. The reason for this formulation is to facilitate comparison with the
arc-eager parser and to simplify the definition of terminal configurations.

6/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

[ROOT]y Economic; newsy hads littley effects; ong financial; marketsg .9

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

[ROOT]y Economic; newsy hads little, effect; ong financial; marketsg .9

o I6; A
1. ([o], 1,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

(—NMDD—\
[ROOT]y Economic; newsy, hads littley effect; ong financial; marketsg .9

o I6; A
L. (0], [1,...,9, @)
2. SwirT = ([0,1], 2,...,9], ©)
[

3. LEFT-ARcywop = ([0 2,...,9], A;={(2,nMOD, 1)})

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ
[ROOT]y Economic; newsy, hads littley effect; ong financial; marketsg .9

o I6; A
1. ([o], 1,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. SHiFT = ([0,2], 3,...,9], A)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ FSBJ—\
[ROOT];, Economic; newsy hads littley effect; ong financial; marketsg .9

o I6; A
1. (o], 1,....,9, o)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ K—SBJj
[ROOT];, Economic; newsy hads littley effect; ong financial; marketsg .9

o I6; A
1. ([o], 1,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. Swirr = ([0,3], M4,...,9], A)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ K—SBJj
[ROOT]y Economic; newsy hads littley effect; ong financial; marketsg .9

o I6; A
1. ([o], 1,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. Swirr = ([0,3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ FSBJj rNMUD—\
[ROOT]; Economic; newsy hads littley effects; ong financial; marketsg .9

o I6; A
1. ([0, [1,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. Swirr = ([0,3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ FSBJj rNMUD—\
o Economic; newsy hads littley effects ong financial; marketsg .g
ROOT]y E hads littl ffect f I ket

o I6; A
1. (0], [1,....9, @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. Swirr = ([0,3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ FSBJj rNMUD—\
o Economic; newsy hads littley effects ong financial; marketsg .g
ROOT]y E hads littl ffect f I ket

o I6; A
1. (o], 1,...,9], o)
2. Swirr = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. Swirr = ([0,3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ FSBJj rNMUD—\
o Economic; newsy hads littley effects ong financial; marketsg .g
ROOT]y E hads littl ffect f I ket

o I6; A
1. ([0, [1,....9, @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. Swirr = ([0,3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ FSBJj rNMUD—\ K—NMUD—\
[ROOT];y Economic; newsy hads littley effects; ong financial; marketsg .9

o I6; A
1. (0], [1,....9, @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. Swirr = ([0,3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)
12. LefFT-ARcmop = ([0, 3,5, 6], [8,9], Ay = A3 U{(8,NMOD, 7)})

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

,—NMOD— —SBI—~ J—NMOD— / :@NMUD—\\
[ROOT]; Economic; newsy hads littley effects; ong financial; marketsg .9

o I6; A
1. ([0, [1,....9, @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. Swirr = ([0,3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)
12. LefFT-ARcmop = ([0, 3,5, 6], [8,9], Ay = A3 U{(8,NMOD, 7)})
13. RIGHT-ARCpyepy = ([0,3,5], [6,9], As = A, U {(6,PMOD,8)})

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

[ROOT];, Economic; newsy hads littley effect; ong financial; marketsg .9

Arc-eager stack-based algorithm

l—NMDDﬂ FSBJj

,~NMOD— ~NMOD- /

PMOD:
,—NMUD—\\

o I6; A
1 ((0] L9, o)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. Swirr = ([0,3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)
12. LefFT-ARcmop = ([0, 3,5, 6], [8,9], Ay = A3 U{(8,NMOD, 7)})
13. RIGHT-ARCpyepy = ([0,3,5], [6,9], As = A, U {(6,PMOD,8)})
14. RIGHT-ARCyygy = ([0, 3], [5,9], Ag = A5 U {(5,NMOD, 6)})

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ FSBJj / UKB—JNMUD—\s /-NMOD-\/
[ROOT]; Economic; newsy hads littley effect; ong financial; marketsg .9

Arc-eager stack-based algorithm

PMOD:
,—NMUD—\\

o I6; A
1. ([o], 1,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LeFT-ARcymop = ([0], [2,...,9], A;={(2,NM0D,1)})
4. SHiFT = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. SHiFT = ([0, 3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)
12. LefFT-ARcmop = ([0, 3,5, 6], [8,9], Ay = A3 U{(8,NMOD, 7)})
13. RIGHT-ARCpyepy = ([0,3,5], [6,9], As = A, U {(6,PMOD,8)})
14. RIGHT-ARCyygy = ([0, 3], [5,9], Ag = A5 U {(5,NMOD, 6)})
15. RiGHT-ARcip; = ([0], 13,91, A; =AsU{(3,0B3,5)})

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

K—NMDDﬂ FSBJj / UKB—JNMUD—\S /-NMOD-\/
[ROOT]; Economic; newsy hads littley effect; ong financial; marketsg .9

Arc-eager stack-based algorithm

PMOD:
,—NMUD—\\

o I6; A
1. ([o], 1,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LeFT-ARcymop = ([0], [2,...,9], A;={(2,NM0D,1)})
4. SHiFT = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. SHiFT = ([0, 3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)
12. LefFT-ARcmop = ([0, 3,5, 6], [8,9], Ay = A3 U{(8,NMOD, 7)})
13. RIGHT-ARCpyepy = ([0,3,5], [6,9], As = A, U {(6,PMOD,8)})
14. RIGHT-ARCyygy = ([0, 3], [5,9], Ag = A5 U {(5,NMOD, 6)})
15. RiGHT-ARcip; = ([0], 13,91, A; =AsU{(3,0B3,5)})
16. Swrr = ([0,3], [9], Aq)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

,—NMOD— —SBI—~ z [Z(BENMUD—\S /-NMOD- / :@NMUD—\\ \

[ROOT]; Economic; newsy hads littley effect; ong financial; marketsg .9

o I6; A
1. ([o], 1,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LeFT-ARcymop = ([0], [2,...,9], A;={(2,NM0D,1)})
4. SHiFT = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. SHiFT = ([0, 3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], [6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)
12. LefFT-ARcmop = ([0, 3,5, 6], [8,9], Ay = As U {()
13. RIGHT-ARCpyepy = ([0,3,5], [6,9], As = Ay U{()
14. RIGHT-ARCyygy = ([0, 3], [5,9], Ag = As U {()
15. RiGHT-ARcip; = ([0], 13,91, A7r = Ag U {()
16. Swrr = ([0,3], [9], Aq)
17. RiGHT-ARc; = ([0, 3], Ag = A, U{(3,P,9)})

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

ROOT
/ —moD— FSBJW\ F ?ﬂﬁ\\ oD~ [:@NMUD—\\ X
[ROOT]y Economicy newss hads littley effect; ong financial; marketsg .9
o 153 A
1. ([o], ,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. SHiFT = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. SHiFT = ([0, 3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)
12. LefFT-ARcmop = ([0, 3,5, 6], [8,9], Ay = A3 U{(8,NMOD, 7)})
13. RIGHT-ARCpyepy = ([0,3,5], [6,9], As = A, U {(6,PMOD,8)})
14. RIGHT-ARCyygy = ([0, 3], [5,9], Ag = A5 U {(5,NMOD, 6)})
15. RiGHT-ARcip; = ([0], 13,91, A; =AsU{(3,0B3,5)})
16. Swrr = ([0,3], [9], Aq)
17. RiGHT-ARc; = ([0, 3], Ag = A, U{(3,P,9)})
18. RIGHT-ARCpoer = ([], [0], Ag = Ag U {(0,R00T,3)})

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

ROOT
/ —moD— FSBJW\ F ?ﬂﬁ\\ oD~ [:@NMUD—\\ X
[ROOT]; Economic; newsy hads little, effect; ong financial; marketsg .9
o 153 A
1. ([o], ,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. SHiFT = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. SHiFT = ([0, 3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)
12. LefFT-ARcmop = ([0, 3,5, 6], [8,9], Ay = A3 U{(8,NMOD, 7)})
13. RIGHT-ARCpyepy = ([0,3,5], [6,9], As = A, U {(6,PMOD,8)})
14. RIGHT-ARCyygy = ([0, 3], [5,9], Ag = A5 U {(5,NMOD, 6)})
15. RiGHT-ARcip; = ([0], 13,91, A; =AsU{(3,0B3,5)})
16. Swrr = ([0,3], [9], Aq)
17. RiGHT-ARc; = ([0, 3], Ag = A, U{(3,P,9)})
18. RIGHT-ARCpoer = ([], [0], Ag = Ag U {(0,R00T,3)})
19. SHirT = ([0], I, Ag)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Ilustration Arc-standard transition sequence for English example sentence:

ROOT
/ —moD— FSBJW\ F ?ﬂﬁ\\ oD~ [:@NMUD—\\ X
[ROOT]y Economic; newss hads littley effect; ong financial; marketsg .9
o 153 A
1. ([o], ,...,9], @)
2. SwirT = ([0,1], 2,...,9], ©)
3. LEFT-ArRcwop = ([0], [2,...,9], A;={(2,nMOD, 1)})
4. SHiFT = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0], 3,...,9], Ay=A4,U{(3,8BJ,2)})
6. SHiFT = ([0, 3], M4,...,9], A)
7. Swirr = ([0,3,4], [5,...,9], A)
8. LEFT-ArRcywop =— ([0,3], [5,...,9], As=A;U{(5,NMOD,4)})
9. Swirr = ([0,3,5], 6,...,9], As)
10. Swirr = ([0,3,5,6], [7,8,9], As)
11. Swirr = ([0,3,5,6,7], [8,9], As)
12. LefFT-ARcmop = ([0, 3,5, 6], [8,9], Ay = A3 U{(8,NMOD, 7)})
13. RIGHT-ARCpyepy = ([0,3,5], [6,9], As = A, U {(6,PMOD,8)})
14. RIGHT-ARCyygy = ([0, 3], [5,9], Ag = A5 U {(5,NMOD, 6)})
15. RiGHT-ARcip; = ([0], 13,91, A; =AsU{(3,0B3,5)})
16. Swrr = ([0,3], [9], Aq)
17. RiGHT-ARc; = ([0, 3], Ag = A, U{(3,P,9)})
18. RIGHT-ARCpoer = ([], 0], Ag = Ag U {(0,R00T,3)})
19. SHirT = ([0], I Ag)

7/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Arc-eager stack-based algorithm

Transitions
LEFT-ARC; (0li,jIB, A) = (0,jIB, AU{(j, L i)})
RIGHT-ARC! (oli,j|B,A) = (olilj, B, AU{(G, Lj)})
REDUCE (0li, B,A) = (0,B,4)
SHIFT (0,i|B,A) = (oli, B, A)
Preconditions
LEFT-ARC; —-[i =0]

~TKA[(k, T, i) € A]
RIGHT-ARC] —3k3I'[(k[,]) € A]
REDUCE k3l (k,1,1) € A]

Figure: Transitions for the arc-eager stack-based parsing algorithm.

The arc-eager parser differs from the arc-standard one by attaching right
dependents (using RIGHT-ARC] transitions) as soon as possible, that is, before the
right dependent has found all its right dependents.

As a consequence, the RIGHT-ARC] transitions cannot replace the head-dependent
structure with the head, as in the arc-standard system, but must store both the
head and the dependent on the stack for further processing. The dependent can be
popped from the stack at a later time through the REDUCE transition, which
completes the reduction of this structure.

8/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

[ROOT]y, Economic; newsy hads littley effects ong financial; marketsg .9

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

[ROOT]y Economic; newsy hads littley effects ong financial; marketsg .9

o 53 A
1. (o], l,....,9, o)
2. SHiFT = ([0,1], 2,...,9], o©)

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

rNMDD—\
[ROOT]y, Economic; newsy hads littley effects ong financial; marketsg .9

o 53 A
1. ([o], 1,...,9, @)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

J—NMDDﬂ
[ROOT]y, Economic; newsy hads littley effects ong financial; marketsg .9

o 53 A
1. ([o], 1,...,9, @)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

J—NMDDﬂ FSBJ—\
[ROOT], Economic; newsy hads littley effects ong financial; marketsg .9

o I} A
1. ([o], 1,...,9, @)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT:
/ J—NMDDﬂ rSBJjX
[ROOT]y Economicy newsy hads littley effects ong financial; marketsg .9

o I} A
1. ([o], 1,...,9, @)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT:
/ J—NMDDﬂ rSBJjX
[ROOT], Economicy newsy hads little, effects ong financial; marketsg .9

o I} A
1. ([o], 1,...,9, o)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT:
/ J—NMDDﬂ rSBJjX rNMUD—\
[ROOT]y Economic; newsy hads littley effects ong financial; marketsg .9

o I} A
1. ([o], 1,...,9, @)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT
/ MO FSBJT\ [P
[ROOT]y Economicy newsy hads littley effect; ong financial; marketsg .9
o I} A

1. ([o], 1,...,9, @)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT
/ —MoD— rSBJjX/ (}B—JNMUD—\X /MO~
[ROOT]y Economicy newsy hads littley effect; ong financial; marketsg .9
o I} A

1. ([o], 1,...,9, @)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})
10. RIGHT-ARCyygy = ([0,3,5,6], [7,8,9], Ag = A5 U {(5,NMOD, 6)})

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT
/ —MoD— rSBJj\ [(}%W\\ /MOD~
[ROOT]y Economicy newsy hads littley effect; ong financial; marketsg .9
o I3 A

1. ([o], 1,...,9, o)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})
10. RIGHT-ARCyygy = ([0,3,5,6], [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Swrr = ([0,3,5,6,7], [8,9], Ag)

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT

[

J—NMDDﬂ rSBJj\/ CLB;]NMUD—\S /-NMUD-\
[ROOT]y Economicy newsy hadj littley effects; ong financial; marketsg .9

FNMUD—\

o 53 A
1. ([o], 1,...,9, @)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})
10. RIGHT-ARCyygy = ([0,3,5,6], [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Swrr = ([0,3,5,6,7], [8,9], Ag)
12. LeFT-ARcywon = ([0,3,5,6] [8,9] A7 = Ag U{(8,NMOD,7)})

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT

[

—MOD—\ rSBJj\ / fNMUD—\ /-NMOD- /

PMOD
¢—NMDD—\\

[ROOT]y Economicy newsy hads littley effects ong financial; marketsg .9
o 53 A
1. ([o], 1,...,9, @)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})
10. RIGHT-ARCyygy = ([0,3,5,6], [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Swrr = ([0,3,5,6,7], [8,9], Ag)
12, LerT-ARcywon — ([0, 3,5,6], [8,9], A7 = Ag U{(8,NMOD,7)})
13. RIGHT-ARCpyopy = ([0,3,5,6,8], [9], Ag = A; U{(6,PMOD,8)})

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT

[

—MOD—\ rSBJj\/ fNMUD—\ /oD~ [
[ROOT]y Economicy newsy hadj littley effect; ong financial; marketsg .9

PMOD
f—NMDD—\\

o 53 A
1. ([o], 1,...,9, o)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})
10. RIGHT-ARCyygy = ([0,3,5,6], [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Swrr = ([0,3,5,6,7], [8,9], Ag)
12, LerT-ARcywon — ([0, 3,5,6], [8,9], A7 = Ag U{(8,NMOD,7)})
13. RIGHT-ARCpyopy = ([0,3,5,6,8], [9], Ag = A; U{(6,PMOD,8)})
14. Repuce = (0,3,5,6], 9], Asg)

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT

[

—MOD—\ rSBJj\/ fNMUD—\ /oD~ [
[ROOT]y Economicy newsy hads littley effect; ong financial; marketsg .9

PMOD
f—NMDD—\\

o 53 A
1. ([o], 1,...,9, o)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})
10. RIGHT-ARCyygy = ([0,3,5,6], [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Swrr = ([0,3,5,6,7], [8,9], Ag)
12, LerT-ARcywon — ([0, 3,5,6], [8,9], A7 = Ag U{(8,NMOD,7)})
13. RIGHT-ARCpyopy = ([0,3,5,6,8], [9], Ag = A; U{(6,PMOD,8)})
14. Repuce = (0,3,5,6], 9], Asg)
15. Repuce = (0,3,5], [9], As)

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT

[

—MOD—\ rSBJj\/ fNMUD—\ /oD~ [
[ROOT]y Economic; newsy hadj littley effects ong financial; marketsg .9

PMOD
f—NMDD—\\

o 53 A
1. ([o], 1,...,9, o)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})
10. RIGHT-ARCyygy = ([0,3,5,6], [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Swrr = ([0,3,5,6,7], [8,9], Ag)
12, LerT-ARcywon — ([0, 3,5,6], [8,9], A7 = Ag U{(8,NMOD,7)})
13. RIGHT-ARCpyopy = ([0,3,5,6,8], [9], Ag = A; U{(6,PMOD,8)})
14. Repuce = (0,3,5,6], 9], Asg)
15. Repuce = (0,3,5], [9], As)
16. Repuce = (0,3], 9], As)

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT

[

J—NMDDﬂ rSBJjX

z fNMUD—\ /-NMOD- / :M—DDNMUD—\\

[ROOT]y Economic; newsy hads littley effects ong financial; marketsg .9

\

o B A
1. ([o], 1,...,9, o)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. Lert-ARcgg; = ([0], 3,...,9], As=A;U{(3,SBJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. SHiFT = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})
10. RIGHT-ARCyygy = ([0,3,5,6], [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Swrr = ([0,3,5,6,7], [8,9], Ag)
12, LerT-ARcywon — ([0, 3,5,6], [8,9], A7 = Ag U{(8,NMOD,7)})
13. RIGHT-ARCpyopy = ([0,3,5,6,8], [9], Ag = A; U{(6,PMOD,8)})
14. Repuce = (0,3,5,6], 9], Asg)
15. Repuce = (0,3,5], [9], As)
16. Repuce = (0,3], 9], As)
17. RicuT-ARC; = ([0,3,9], I, Ag = A5 U{(3,P,9)})

9/16

2 Stack-based Algorithms

Arc-standard stack-based algorithm

Arc-eager stack-based algorithm

Illustration Arc-eager transition sequence for English example sentence:

ROOT
/ —MOD—\ rSBJj\ F ,~MoD—\, oD~ /[EM—DDNMUD—\\ \
[ROOT]y Economic; newsy, hads littley effect; ong financial; marketsg .9
o 53 A
1. ([o], 1,...,9, o)
2. SHiFT = ([0,1], 2,...,9], o©)
3. LEFT-ARCwmon = ([0], 2,...,9, A;={(2,NM0D, 1)})
4. Swirr = ([0,2], 3,...,9], A)
5. LEFT-ARcgg; = ([0, [3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRggr =— ([0,3], M4,...,9], Asz= A;U{(0,R00T,3)})
7. Swirr = ([0,3,4], [5,...,9], As)
8. LEFT-ARcywop = ([0,3], >,...,9, Ay=AsU{(5,NMOD,4)})
9. RiGHT-ARcgz; = ([0,3,5], [6,...,9], As=A,U{(3,0B],5)})
10. RIGHT-ARCyygy = ([0,3,5,6], [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Swrr = ([0,3,5,6,7], [8,9], Ag)
12, LerT-ARcywon — ([0, 3,5,6], [8,9], A7 = Ag U{(8,NMOD,7)})
13. RIGHT-ARCpyopy = ([0,3,5,6,8], [9], Ag = A; U{(6,PMOD,8)})
14. Repuce = (0,3,5,6], 9], Asg)
15. Repuce = (0,3,5], [9], As)
16. Repuce = (0,3], 9], As)
17. RicuT-ARC; = ([0,3,9], (Ag = A5 U{(3,P,9)})

9/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

List-based Algorithms

Definition
A list-based configuration for a sentence x = (wp, w1, . . ., wy,) is a quadruple
c= (A1, A2, 08, A), where
1. A1 is a list of tokens 71 < k; (for some k1 < n)
m will represent as a list with head to right (nodes in decreasing order)
2. Ao is a list of tokens i < ks (for some ko, such that k1 < ky < n)

m will represent as a list with head to left (nodes in increasing order)
3. B is a buffer of tokens j > ko,

m will represent as a list with head to left

4. A'is a set of dependency arcs such that G = ({0, 1,...,n}, A) is a dependency
graph for x.

Write 1.\ for the concatenation of lists \; and \s. Ex.,
[0,1].[2,3,4] = [0,1,2,3,4].

Definition

A list-based transition system is a quadruple S = (C, T, ¢start, Cterminal), Where
1. C'is the set of all list-based configurations,
2. Cstart (T = (wo, w1, ..., wy)) = ([0, [, [1,- .., n], D),
3. T is a set of transitions, each of which is a functiont: C — C,
4. C"cerminal — {C eC | C = ()\la)‘27 H; A)}
(Note, only difference from stack-based system is: two lists instead of a single stack)

10/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Non-projective list-based algorithm

Transitions
LEFT-ARC} (Mli, A2 1B, A) = (M, 1Ay, jIB, AU{(L D)})
RIGHT-ARC] (Mli,A2,j1B,A) = (A1, i|A2,j1B, AU{(, L))})
NoO-ARC" (A1]i, A2, B, A) = (A, i, B,A)
SHIFT? (A1, Ai0lB,A) = (AN, [1,B,A)
Preconditions
LEFT-ARC} —[i = 0]

-3k3l'[(k, V1) € A]

—[i =% jla
RIGHT-ARC! —3k3Il'[(k,I',]) € Al

=l =" ila

Figure: Transitions for the arc-eager stack-based parsing algorithm.

(19 2

The fact that both the head and the dependent are kept in either A2 or S makes it
possible to construct non-projective dependency graphs, because the No-Arc”

transition allows a node to be passed from A; to A\ even if it does not (yet) have a
head.

11/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

AL A2 B A
1. ([0], I, 1,...,8], ©)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A Aa 3 A
1. ([o], IE [1,....8, &)
2. Smrrt = ([0,1], [, 2,...,8], @)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

/Atr3
[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

M A2 B A
1. (o], IE n,....,8], o)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

/Atr3
[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
1. ([0], I, 1,...,8], ©)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr* = ([0,1,2],], [3,...,8], A)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

/Atr3
[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
1. ([o], IE [1,....8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Swrtt = ([0,1,2],]|, 3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

/Atr3
[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
1. ([0], I, 1,...,8], ©)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,...,8], A)
6. No-Arc” = ([0], 1,2, 3,....8], A)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred
' /Atr3

[ROOT]y Z; nichs jes jeny jednas nag kvalitu; .g

A1 A2 54 A
1 (0], [, [1,....8], @)
2 Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr* = ([0,1,2],], [3,...,8], A)
5 No-Arc” = ([0,1], 2], 3,....8], A)
6 No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred
' /Atr3

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
L ((oL l 1.8, @)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr* = ([0,1,2],], [3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,...,8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred
' /Atr3

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
L ([l I, 1.8, @)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr* = ([0,1,2],], [3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred
' /At ™ [AuxZ—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
1. (0], [, [1,....8], @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr* = ([0,1,2],], [3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swirr = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred
' /At ™ s /_ S[‘.EAI.IXZ—\ \

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
L ((oL l 1.8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr* = ([0,1,2],], [3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred
' /At ™ s /_ s[‘.EAIIXZ—\ s

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
1. (0], [, [1,....8], @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], Aq)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred AuXr N
/At ™ s / [AuxZ

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
1. (0], [, [1,....8], @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], Aq)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred AuXY -
/At ™ s / [AuxZ

[ROOT]y Z; nichy jes jeny jednas nag kvalitur .g

A1 A2 B A
1. (0], [, [1,....8], @)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Smrtt = ([0,...,4], [, [5,....8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred AuXY -
/At ™ s / [AuxZ

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred AuXY -
/At ™ s / [AuxZ

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
L (oL) 1,....8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred o Aux‘?\
! f—Sb—*L,‘
/At ™ [AuxZ \X

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
L (oL) 1,....8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred o Aux‘?\
! F—Sb—*\‘
/At ™ [AuxZ \

[ROOT]y Z; nichy jes jeny jednas nag kvalitur .g

A A2 I6] A
L (oL) 1,....8, @)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr* = ([0,1,2],], [3,...,8], A)
5. No-Arc™ = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], 1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. Swirrt = ([0,...,3], [M4,...,8], A)
9. Swirr = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc" = ([0,...,4], [5], 6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], 6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Swrt* = ([0,...,6], [, [7,8], Ag)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

ﬁ?red 0 Aux‘?\
ey
/At ™ [AuxZ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitur .g

A1 A2 B A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-ArRc" = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred 0 Aux‘?\
! F—Sbﬁ,‘
/At ™ [AuxZ \ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-ArRc" = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Swrt = ([0,...,7], [, 8], Az)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred 0 Aux‘?\
! F—Sbﬁ,‘
/At ™ [AuxZ \ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitur .g

A1 A2 B A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Swrt = ([0,...,7], [, 8], Ay)
21. No-Arc” = ([0,...,6], [7], 8], A;)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred 0 Aux‘?\
! F—Sbﬁ,‘
/At ™ [AuxZ \ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitur .g

A1 A2 B A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Swrt = ([0,...,7], [, 8], Ay)
21. No-Arc” = ([0,...,6], [7], 18], Az)
22. No-Arc” = ([0,...,5], [6,7], 8], Aq)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred 0 Aux‘?\
! F—Sbﬁ,‘
/At ™ [AuxZ \ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 B A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-ArRc" = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Swrt = ([0,...,7], [, 8], Ay)
21. No-Arc” = ([0,...,6], [7], 18], Az)
22. No-Arc” = ([0,...,5], [6,7], 8], Aq)
23. No-Arc” = ([0,...,4], [5,6,7], [8], Ay)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred 0 Aux‘?\
! F—Sbﬁ,‘
/At ™ [AuxZ \ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitur .g

A1 A2 B A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-ArRc" = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Swrt = ([0,...,7], [, 8], Ay)
21. No-Arc” = ([0,...,6], [7], 18], Az)
22. No-Arc” = ([0,...,5], [6,7], 8], Aq)
23. No-Arc” = ([0,...,4], [5,6,7], [8], Ay)
24. No-Arc" = ([0,...,3], [4,...,7], [8], Az)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred 0 Aux‘?\
! F—Sbﬁ,‘
/At ™ [AuxZ \ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitur .g

A1 A2 B A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-ArRc" = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Swrt = ([0,...,7], [, 8], Ay)
21. No-Arc” = ([0,...,6], [7], 18], Az)
22. No-Arc” = ([0,...,5], [6,7], 8], Aq)
23. No-Arc” = ([0,...,4], [5,6,7], [8], Ay)
24. No-Arc" = ([0,...,3], [4,...,7], [8], Az)
25. No-Arc” = ([0,1,2], 3,...,7, [8], Aq)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred 0 Aux‘?\
! F—Sbﬁ,‘
/At ™ [AuxZ \ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitur .g

A1 A2 B A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], I, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc" = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Smrr = ([0,...,7], [, 8], Az)
21. No-Arc” = ([0,...,6], [7], 18], Az)
22. No-Arc” = ([0,...,5], [6,7], 8], Aq)
23 No-Arc” = ([0,...,4], [5,6,7], [8], Ay)
24 No-Arc" = ([0,...,3], [4,...,7], [8], Az)
25 No-Arc™ = ([0,1,2], [3,....7], 8], Ay)
26 No-Arc” = ([0,1], 2,...,7, [8], Az)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

Pred 0 Aux‘?\
! F—Sbﬁ,‘
/At ™ [AuxZ \ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 5} A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Smrr = ([0,...,7], [, 8], Az)
21. No-Arc” = ([0,...,6], [7], 18], Az)
22. No-Arc” = ([0,...,5], [6,7], 8], Aq)
23. No-Arc” = ([0,...,4], [5,6,7], 8], A;)
24. No-Arc" = ([0,...,3], [4,...,7], [8], Az)
25. No-Arc” = ([0,1,2], 3,...,7, [8], Aq)
26. No-Arc"” = ([0,1], 2,...,7], 8], Az)
27. No-Arc" = ([0], 1,...,7, 8], Az)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

AuxK

HPred 0 Aux‘?\
N
/At ™ [AuxZ /—Adv—\

[ROOT]y Z; nichs jes jeny jednas nag kvalitu; .g

A1 A2 5} A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], 2,3,4], [5,....8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Smrr = ([0,...,7], [, 8], Az)
21. No-Arc” = ([0,...,6], [7], 18], Az)
22. No-Arc” = ([0,...,5], [6,7], 8], Aq)
23. No-Arc” = ([0,...,4], [5,6,7], 8], A;)
24. No-Arc" = ([0,...,3], [4,...,7], [8], Az)
25. No-Arc” = ([0,1,2], 3,...,7, [8], Aq)
26. No-Arc"” = ([0,1], 2,...,7], 8], Az)
27. No-Arc" = ([0], 1,...,7, 8], Az)
28. RIGHT-ARCy,x = (], 0,....7, [8], Ag = A7 U (0,AuxK,8))

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

AuxK

HPred 0 Aux‘?\
iy
/At ™ [AuxZ /—Adv—\

[ROOT]y Z; nichy jes jeny jednas nag kvalitus .g

A1 A2 5} A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], [, 2,...,8], @)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], [2,3,4], [5,...,8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Smrr = ([0,...,7], [, 8], Az)
21. No-Arc” = ([0,...,6], [7], 18], Az)
22. No-Arc” = ([0,...,5], [6,7], 8], Aq)
23. No-Arc” = ([0,...,4], [5,6,7], 8], A;)
24. No-Arc" = ([0,...,3], [4,...,7], [8], Az)
25. No-Arc” = ([0,1,2], 3,...,7, [8], Aq)
26. No-Arc"” = ([0,1], 2,...,7], 8], Az)
27. No-Arc" = ([0], 1,...,7, 8], Az)
28. RIGHT-ARCy,x = (], 0,....7, [8], Ag = A7 U (0,AuxK,8))
29. Swrt* = ([0,...,8], [, I, Ag)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for non-projective Czech example sentence:

AuxK

HPred 0 Aux‘?\
i
/A‘t ™ [AuxZ /—Adv—\

[ROOT]y Z; nichs jes jeny jednas nag kvalitu; .g

A1 A2 5} A
1. ([o], I, ,...,8, @)
2. Smrrt = ([0,1], IE 2,...,8], ©)
3. RiGHT-Arcy,, = ([0], [1], 2,...,8], A;=(1,Atr,2))
4. Smrr = ([0,1,2],], 3,...,8], A)
5. No-Arc” = ([0,1], 2], 3,....8], A)
6. No-Arc" = ([0], [1,2], 3,....8], A)
7. RIGHT-ARCp.oq = (], 0,1,2], 3,...,8], Az=A;U(0,Pred,3))
8. SHirtr = ([0,...,3],], M4,...,8], A)
9. Swrt* = ([0,...,4], [, [5,...,8], A)
10. LEFT-ARCh,, = ([0,...,3], [4], B,...,8], As=AsU(5,AuxZ,4))
11. RicHT-ARcy, = ([0, 1,2], 3,4], 5,...,8], As=A3U(3,8b,5))
12. No-Arc” = ([0,1], [2,3,4], [5,...,8], A4)
13, LEFT-ARCpe = ([0], ,...,4], [5,...,8], As =AU (5 AuxP,1))
14. Swrt* = ([0,...,5], [, 6,7,8], As)
15. No-Arc” = ([0,...,4], [5], [6,7,8], As)
16. No-Arc” = ([0,...,3], [4,5], [6,7,8], As)
17. RIGHT-ARCy,» = ([0,1,2], (3,4, 5], [6,7,8], Ag = A5 U (3, AuxP,6))
18. Smrr = ([0,...,6], [, [7,8], Ag)
19. RiGHT-ARCyy, = ([0,...,5], [6], [7,8], A7 = Ag U (6,Adv,7))
20. Smrr = ([0,...,7], [, 8], Az)
21. No-Arc” = ([0,...,6], [7], 18], Az)
22. No-Arc” = ([0,...,5], [6,7], 8], Aq)
23. No-Arc” = ([0,...,4], [5,6,7], 8], A;)
24. No-Arc" = ([0,...,3], [4,...,7], [8], Az)
25. No-Arc” = ([0,1,2], 3,...,7, [8], Aq)
26. No-Arc"” = ([0,1], 2,...,7], 8], Az)
27. No-Arc" = ([0], 1,...,7, 8], Az)
28. RIGHT-ARCy,x = (], 0,...,7, [8], Ag = A7 U (0,AuxK,8))
29. Swrt* = ([0,...,8], [, I Ag)

12/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Projective list-based algorithm

Transitions

LEFT-ARC] (AM1li, A2, jIB, A) = (M, [1,j1B, AU{(j L D)})
RIGHT-ARC] (A1[i,Ay,jIB,A) = (Mlilji[1, B, AU{G, L))}
NoO-ARC? (Ali, A0, B,A) = (A, A, B A)

SHIFT (A1, A2,1B,A) = (AA2li, [, B, A)
Preconditions

LEFT-ARC] —[i = 0]
~3A[(K T, i) € A]

RIGHT-ARC] —Jk3A'[(k, 1)) € Al
NoO-ARC? JKJ[(k,1,i) € A]

Figure: Transitions for the arc-eager stack-based parsing algorithm.

(13 »

The projective, list-based parser uses the same basic strategy as its non-projective
counterpart, but skips any pair (i, j) that could give rise to a non-projective
dependency arc.

Skipping many node pairs makes it more efficient in practice, although the
worst-case time complexity remains the same.

13/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

[ROOT]y Economic; newsy, hads little, effect; ong financial; marketsg .9

A1 A2 B A
1. ([0], 1, 1,...,9], @)

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

[ROOT]y Economic; newsy hads littley effect; ong financial; marketsg .9

A1 A2 B A
L. (¢ [o], [, [1,....9, @)
2. Swrr* = ([0,1], 0, 2,...,9], @)

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

PNMOD—\
[ROOT]y Economic; news, hads little; effect; ong financial; marketsg .9

A1 A2 B A
L. (o], {, [L,...,9], @)
2. Swrr* = ([0,1], 0, 2,...,9], @)
3. LEFT-ARChyoy =— ([0], I, [2,...,9], A;={(2,NMOD, 1)})

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

K—NMODﬂ
[ROOT]y Economic; news, hads littley effect; ong financial; marketsg .9

A1 A2 B A
L. (¢ [o], [, [1,....9, @)
2. Swrr* = ([0,1], 0, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Swrt* = ([0,2], 0, 3,...,9], A)

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

K—NMODﬂ rSBJ—\
[ROOT]; Economic; newsy hads little, effect; ong financial; marketsg .9

Al A2 B A
L. ([0, IE [1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ K—NMODﬂ K—SBJW\
[ROOT]; Economic; newsy hads little, effect; ong financial; marketsg .9

A1 A2 B A
L (0], [, [1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ K—NMODﬂ FSBJ\\
[ROOT]; Economic; newsy hadj little, effect; ong financial; marketsg .9

A1 A2 B A
1. ([o], 0, 1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Smrrt = ([0,3,4], I, [5,...,9], As)

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ K—NMODﬂ K—SBJj\ rNMUD—\
[ROOT]; Economic; newsy hads littley effect; ong financial; marketsg .9

Al Ao 3 A
L. ([0, [, [1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Smrrt = ([0,3,4], I, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], I 5,...,9], As=A3U{(5,NMOD,4)})

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ K—NMODﬂ K—SBJj\ / OKB—JNMUD—\S
[ROOT]; Economic; newsy hads littley effect; ong financial; marketsg .9
A1 Ao B A
1. ([0], 1, 1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Swrt* = ([0,2], 0, 3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Swrr* = ([0,3,4], 0, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], I 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], l, 6,...,9], As=A,U{(3,0B,5)})

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ K—NMODﬂ FSBJ\\ / OKB—JNMUD—\S /-NMOD-\
[ROOT]; Economic; newsy hads littley effect; ong financial; marketsg .9
A1 Ao B A

1. ([0], 1, 1,...,9], @)
2. Swrr* = ([0,1], 0, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Smrrt = ([0,3,4], I, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], I 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], l, 6,...,9], As=A,U{(3,0B,5)})
10. RIGHT-ARChyoy = ([0,3,5,6], 1, [7,8,9], Ag = As U{(5,NMOD,6)})

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ K—NMODﬂ K—SBJj\ / UKB—JNMUD—\S /-NMOD-\
[ROOT];, Economic; newsy hads littley effect; ong financial; marketsg .9
A1 Ao B A
1. ([0], 1, 1,...,9], @)
2. Swrr* = ([0,1], 0, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Smrrt = ([0,3,4], I, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], I 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], l, 6,...,9], As=A,U{(3,0B,5)})
10. RIGHT-ARChyoy = ([0,3,5,6], I, [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Smrrt = ([0,3,5,6,7], [, [8,9], Ag)

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ K—NMODﬂ FSBJW\, OKB—JNMUD—\S /-NMOD-\ FNMUD—\
[ROOT]; Economic; newsy hadj littley effect; ong financial; marketsg .9

A1 A2 g A
1. (o], [, 1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Smrrt = ([0,3,4], I, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], I 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], l, 6,...,9], As=A,U{(3,0B,5)})
10. RIGHT-ARChyoy = ([0,3,5,6], I, [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Smrrt = ([0,3,5,6,7], [, [8,9], Ag)
12. LeFT-ArRchyy = ([0,3,5,6], I, [8,9], A7 = Ag U {(8,NMOD, 7)})

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ —NMOD— K—SBJj\/ %BENMUD—\X /MOD, / }@NMUD—\\
[ROOT]; Economic; newsy hads littley effect; ong financial; marketsg .9

A1 A2 g A
L ([0, [, [1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Smrrt = ([0,3,4], I, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], I 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], l, 6,...,9], As=A,U{(3,0B,5)})
10. RIGHT-ARChyoy = ([0,3,5,6], I, [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Smrrt = ([0,3,5,6,7], [, [8,9], Ag)
12. LeFT-ArRchyy = ([0,3,5,6], I, [8,9], A7 = Ag U {(8,NMOD, 7)})
13. RIGHT-ARChyyy, = ([0,3,5,6,8], [], 9], Ag = A7 U{(6,PMOD,8)})

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ —NMOD— K—SBJj\/ %BENMUD—\X /MOD, / }@NMUD—\\
[ROOT]; Economic; newsy hadj littley effect; ong financial; marketsg .9

A1 A2 g A
L ([0, [, [1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Smrrt = ([0,3,4], I, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], I 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], l, 6,...,9], As=A,U{(3,0B,5)})
10. RIGHT-ARChyoy = ([0,3,5,6], I, [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Smrrt = ([0,3,5,6,7], [, [8,9], Ag)
12. LeFT-ArRchyy = ([0,3,5,6], I, [8,9], A7 = Ag U {(8,NMOD, 7)})
13. RIGHT-ARChyyy, = ([0,3,5,6,8], [], 9], Ag = A7 U{(6,PMOD,8)})
14. No-ARc? = ([0,3,5,6], [8], 9], Ag)

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ —NMOD— K—SBJj\/ %BENMUD—\X /MOD, / }@NMUD—\\
[ROOT]; Economic; newsy hadj littley effect; ong financial; marketsg .9

A1 A2 g A
L ([0, [, [1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Smrrt = ([0,3,4], I, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], I 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], l, 6,...,9], As=A,U{(3,0B,5)})
10. RIGHT-ARChyoy = ([0,3,5,6], I, [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Smrrt = ([0,3,5,6,7], [, [8,9], Ag)
12. LeFT-ArRchyy = ([0,3,5,6], I, [8,9], A7 = Ag U {(8,NMOD, 7)})
13. RIGHT-ARChyyy, = ([0,3,5,6,8], [], 9], Ag = A7 U{(6,PMOD,8)})
14. No-ARc? = ([0,3,5,6], [8], 9], Ag)
15. No-arc? = ([0,3,5], 6, 8], [9], As)

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT:
/ —NMOD— K—SBJj\/ %BENMUD—\X /MOD, / }@NMUD—\\
[ROOT]; Economic; newsy hads littley effect; ong financial; marketsg .9

A1 A2 g A
L (0], [, [1,...,9], @)
2. Smrrt = ([0,1], I, 2,...,9], @)
3. LEFT-ARChygy = ([0, I 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], I, [3,...,9], A)
5. LEFT-ARcEy; = ([0], 0, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], I 4,...,9], As=A,U{(0,R00T,3)})
7. Smrrt = ([0,3,4], I, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], I 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], l, 6,...,9], As=A,U{(3,0B,5)})
10. RIGHT-ARChyoy = ([0,3,5,6], I, [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Smrrt = ([0,3,5,6,7], [, [8,9], Ag)
12. LeFT-ArRchyy = ([0,3,5,6], I, [8,9], A7 = Ag U {(8,NMOD, 7)})
13. RIGHT-ARChyyy, = ([0,3,5,6,8], [], 9], As = A7 U {(6,PMOD,8)})
14. No-Arc? => ([0,3,5,6], [8], (9], As)
15. No-arc? = ([0,3,5], 6, 8], [9], As)
16. No-arc? = ([0,3], [5,6,8], [9], As)

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT C i
/ —NMOD— K—SBJW\ %BENMUD—\X mop- [}@NMUD—\\ \
[ROOT]; Economic; newsy hads littley effect; ong financial; marketsg .9
/\1)\2 8 A
L ([0, [, [1,....9, @)
2. Swrr* = ([0,1], 0, 2,...,9], @)
3. LEFT-ARChygy = ([0, [, 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], 0, [3,...,9], A)
5. LEFT-ARcEy; = ([0], [, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], [, 4,...,9], As=A,U{(0,R00T,3)})
7. Swrr* = ([0,3,4], 0, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], [, 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], 1B [6,...,9], As;=A,U{(3,0B],5)})
10. RIGHT-ARChyoy = ([0,3,5,6], I [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Smrrt = ([0,3,5,6,7], [, [8,9], Ag)
12. LeFT-ArRchyy = ([0,3,5,6], , [8,9], A7 = Ag U{(8,NMOD, 7)})
13. RIGHT-ARChyyy, = ([0,3,5,6,8], [], 9], As = A; U {(6,PMOD,8)})
14. No-ARc? = ([0,3,5,6], [8], 9], Ag)
15. No-arc? = ([0,3,5], [6, 8], [9], As)
16. No-arc? = ([0,3], [5,6,8], 9], As)
17. RigHT-ARc) = ([0, 3,9], I, 0, Ag = Ag U {(3,P,9)})

14/16

3 List-based Algorithms

Non-projective list-based algorithm Projective list-based algorithm

Ilustration Transition sequence for projective English example sentence (nearly
identical to the arc-eager stack-based sequence):

ROOT ! i
/ —NMOD— K—SBJW\ ?zBENMUD—\X mop- [QENMUD—\\ \
[ROOT]y Economic; news, hadg littley effect; ong financial; marketsg .g
i Ao 3 A
L. (¢ [o], Ik [1,....9, @)
2. Swrr* = ([0,1], 0, 2,...,9], @)
3. LEFT-ARChygy = ([0, [, 2,...,9, A;={(2,NMO0D, 1)})
4. Smrrt = ([0,2], 0, [3,...,9], A)
5. LEFT-ARcEy; = ([0], [, 3,...,9], Ay=A,U{(3,8BJ,2)})
6. RIGHT-ARCRgey = ([0,3], [, 4,...,9], As=A,U{(0,R00T,3)})
7. Swrr* = ([0,3,4], 0, [5,...,9], As)
8. LEFT-ARCjygp = ([0,3], [, 5,...,9], As=A3U{(5,NMOD,4)})
9. RigHT-ArRcly; = (1 [0,3,5], 1B [6,...,9], As;=A,U{(3,0B],5)})
10. RIGHT-ARChyoy = ([0,3,5,6], I [7,8,9], Ag = A5 U {(5,NMOD, 6)})
11. Smrrt = ([0,3,5,6,7], [, [8,9], Ag)
12. LeFT-ArRchyy = ([0,3,5,6], , [8,9], A7 = Ag U{(8,NMOD, 7)})
13. RIGHT-ARChyyy, = ([0,3,5,6,8], [], 9], Ag = A7 U {(6,PMOD,8)})
14. No-ARc? = ([0,3,5,6], [8], 9], Ag)
15. No-arc? = ([0,3,5], [6, 8], [9], As)
16. No-arc? = ([0,3], [5,6,8], 9], As)
17. RigHT-ARc) = ([0, 3,9], I, I Ag = Ag U {(3,P,9)})

14/16

4 Experimental Evaluation

Evaluation of the four algorithms in deterministic data-driven parsing:
Use an oracle approximated by a classifier trained on treebank data to analyze of
the accuracy and efficiency of these systems.

m Data: CoNLL-X shared task multilingual dependency parsing

15/16

4 Experimental Evaluation

Evaluation of the four algorithms in deterministic data-driven parsing:
Use an oracle approximated by a classifier trained on treebank data to analyze of
the accuracy and efficiency of these systems.

m Data: CoNLL-X shared task multilingual dependency parsing

Data sets. Tok = number of tokens (x1000); Sen = number of sentences (x1000); T/S = tokens
per sentence (mean); Lem = lemmatization present; CPoS = number of coarse-grained
part-of-speech tags; PoS = number of (fine-grained) part-of-speech tags; MSF = number of
morphosyntactic features (split into atoms); Dep = number of dependency types; NPT =
proportion of non-projective dependencies/tokens (%); NPS = proportion of non-projective
dependency graphs/sentences (%).

Language Tok Sen T/S Lem CPoS PoS MSF Dep NPT NPS

Arabic 54 15 372 yes 14 19 19 27 04 112
Bulgarian 190 144 148 no 11 53 50 18 04 5.4
Chinese 337 57.0 5.9 no 22 303 0 8 00 0.0
Czech 1,249 72.7 172 yes 12 63 61 78 19 232
Danish 94 5.2 182 no 10 24 47 52 1.0 156
Dutch 195 133 146 yes 13 302 81 26 54 364

German 700 39.2 17.8 no 52 52 0 46 23 278
Japanese 151 170 89 no 20 77 0 7 11 53
Portuguese 207 9.1 228 yes 15 21 146 55 13 189

Slovene 29 15 187 yes 11 28 51 25 19 222
Spanish 89 33 270 yes 15 38 3 21 01 17
Swedish 191 11.0 17.3 no 37 37 0 5 10 938
Turkish 58 5.0 115 yes 14 30 8 25 15 116

Figure: Data sets

15/16

4 Experimental Evaluation

Learning and parsing time for seven parsers on six languages, measured in seconds.

NP-L = non-projective list-based; P-L = projective list-based; PP-L = pseudo-projective list-based;
P-E = projective arc-eager stack-based; PP-E = pseudo-projective arc-eager stack-based; P-S =
projective arc-standard stack-based; PP-S = pseudo-projective arc-standard stack-based.

Learning Time
Language NP-L P-L PP-L P-E PP-E P-S PP-S
Arabic 1,814 614 603 650 647 1639 1,636
Bulgarian 6,796 2918 2926 2919 2939 3321 3,391
Chinese 17,034 13,019 13,019 13,029 13,029 13,705 13,705
Czech 546,880 250,560 248,511 279,586 280,069 407,673 406,857
Danish 2964 1,248 1,260 1,246 1,262 643 647
Dutch 7,701 3,039 2966 3,055 2965 7,000 6,812
German 48,699 16,874 17,600 16,899 17,601 24,402 24,705
Japanese 211 191 188 203 208 199 199
Portuguese 25,621 8433 8336 8436 8335 7724 7,731
Slovene 167 78 90 93 9 86 90
Spanish 1,999 562 566 565 565 960 959
Swedish 2,410 942 1,020 945 1,022 1,350 1,402
Turkish 720 498 519 504 516 515 527
Average 105,713 46,849 46,616 51,695 51,876 74,798 74,691
Parsing Time
Language NP-L P-L PP-L P-E PP-E P-S PP-S
Arabic 213 103 131 108 135 196 243
Bulgarian 139 93 102 93 103 135 147
Chinese 1,008 855 855 855 855 803 803
Czech 5244 3,043 5889 3460 6,701 3,874 7,437
Danish 109 66 83 66 83 82 106
Dutch 349 209 362 211 363 253 405
German 781 456 947 455 945 494 1,004
Japanese 10 8 8 9 10 7 7
Portuguese 670 298 494 298 493 437 717
Slovene 69 44 62 47 65 43 64
Spanish 133 67 75 67 75 80 91
Swedish 286 202 391 201 391 242 456
Turkish 218 162 398 162 403 153 380
Average 1,240 712 1,36l 782 1,49 897 1,688

Figure: Parsing efficiency

16/16

[§ Nivre, Joakim (Dec. 1, 2008). “Algorithms for Deterministic Incremental
Dependency Parsing”. In: Computational Linguistics 34.4, pp. 513-553. pol:
10.1162/c0li.07-056-R1-07-027.

17/16

https://doi.org/10.1162/coli.07-056-R1-07-027

	Preliminaries
	Dependency structures
	Incremental dependency parsing

	Stack-based Algorithms
	Arc-standard stack-based algorithm
	Arc-eager stack-based algorithm

	List-based Algorithms
	Non-projective list-based algorithm
	Projective list-based algorithm

	Experimental Evaluation
	Ref.

