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A
s you read the words of this text, one after another, you build an understanding of the meaning it conveys.

How do humans accomplish the task of language comprehension? Important clues about the mechanisms

underlying this core cognitive capacity can be found in the patterns of effort during processing. A prominent

approach in psycholinguistics has been that of surprisal theory (Hale, 2001; Levy, 2008), the hypothesis that the

effort a word incurs is proportional to its negative log probability—an information-theoretic quantity known as

surprisal, which quantifies how unexpected or surprising it is, given context. This influential hypothesis provides a

direct link between the statistical predictability of words and human behaviour during language comprehension,

based on the intuition that the cognitive cost of a word is fundamentally driven by the amount of information it

contributes.

However, this focus on next-word prediction may be too narrow: This dissertation argues that standard surprisal

theory has some significant and under-discussed shortcomings. Foremost, no known processing algorithm has

complexity that scales directly proportional to surprisal. Additionally, there are empirical phenomena in human

language processing behaviour that cannot be explained by standard surprisal theory. Based on core motivations

from prior work, I develop a reframing of the central hypothesis of surprisal theory: I propose that processing

cost directly reflects the computational complexity of updating probabilistic beliefs, which can be measured by the

divergence between belief distributions. I argue that, by proposing that cost is a function of belief-update size, we

are afforded the possibility for a much-needed theoretical connection between computational theories of processing

difficulty and known inference algorithms. Namely, this proposal provides an intrinsic link to a wide family of

potential theories of comprehension at an algorithmic level, such as sampling-based algorithms for probabilistic

inference. Additionally, this proposal provides explanation for empirical phenomena wherein words are processed

easily, even though they are unpredictable—such phenomena are inherently problematic for standard approaches

that use surprisal as the measure of cost.

Another area where the predictability of words in context is potentially relevant to explaining language comprehen-

sion is in the description of latent linguistic structure—in terms of the dependency relationships between words.

Linguistic dependency structures are widely used to describe the grammatical relationships that govern how a

sentence is interpreted. At the same time, words display robust statistical relationships with each other, in a way that

is intrinsically related to grammatical structure—for instance, as the result of agreement or selectional requirements.

This dissertation contributes an analysis of the relationship between these two kinds of word-to-word dependencies,

extracting dependency parses using probability estimates from large language models (LMs), and finding that the

relationship is more tenuous than previously supposed.

The contributions of this dissertation are interdisciplinary in nature, bridging cognitive psychology, artificial intelli-

gence, and linguistics. It explores central questions about the cognitive science of language using formal tools from

information theory and models from natural language processing, and offers connections between psycholinguistics

and literature on the computational complexity of incremental inference algorithms. This work provides evidence

that human language processing costs arise not just from the challenge of predicting upcoming words, but from the

computational demands of inferring and updating beliefs about meaning. These results contribute to an under-

standing of the relationship between distributional patterns of language use and the structures and mechanisms by

which language is processed.
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Quantifying processing cost with belief-update

During comprehension, the amount of cognitive resources required to integrate each word is variable and context

dependent. What mechanism can explain why a given word is harder or easier to process? Chapter 1 provides an

overview of the approach I take to answering this question, proposing to measure processing cost with divergence

between belief distributions, and situating this proposal with respect to prior literature. This chapter also gives

derivations of novel predictions within this framework, which are further explored and tested in subsequent chapters.

This dissertation follows a growingbodyof previous literature inmodelling comprehension as probabilistic (Bayesian)

inference, within the larger framework of rational analysis of cognition (Anderson, 1990; Anderson & Schooler,

1991; Chater et al., 1999), taking the view that the processing cost can be measured by the size of the Bayesian

update in beliefs about the latent interpretation, given the new information contained in the word. This intuition

has been encapsulated as the key justification for the influential surprisal theory (Hale, 2001; Levy, 2008), which

hypothesizes that the cognitive effort associated with processing a wordw in context is proportional to its surprisal,

an information theoretic quantity defined as the negative log probability of the word given context:

Surprisal theory—quantifying cost as unpredictability.

The processing cost of a word w in context increases proportional to its surprisal, defined as s(w) :=
− log p(w | context). That is,

cost(w) ∝ s(w)

Intuitively, the more surprising a word is, the larger a change it causes in a comprehender’s beliefs about the meaning

of the utterance, in a rational inference setting. Empirically, it is well documented that words that are less expected are

harder to process—for example, during reading, people spend more time looking at words which are less predictable

given context, as has been known for decades (Ehrlich & Rayner, 1981; Balota et al., 1985; McDonald & Shillcock,

2003a, 2003b), and this relationship has offered empirical support to surprisal theory as a broad explanation of

processing difficulty (Smith & Levy, 2013; Goodkind & Bicknell, 2018; Wilcox et al., 2020; Wilcox et al., 2023;

Hofmann et al., 2022; Shain et al., 2024).

However, the standard arguments for deriving surprisal theory require two important assumptions: These are

(1) that surprisal is equivalent to belief update size; and (2) that the linking function between belief update and

processing cost is linear. These assumptions are explicitly described in the original work motivating surprisal theory

(Levy, 2005, 2008), and while there has been a lively debate about the form of the linking function (Levy & Jaeger,

2006; Brothers & Kuperberg, 2021; Meister et al., 2021; van Schijndel & Linzen, 2021; Arehalli et al., 2022; Huang

et al., 2024; Shain et al., 2024), the theoretical justifications for these two assumptions have largely gone unquestioned

in much subsequent work. I argue that there are important and timely reasons to question both these assumptions,

from theoretical as well as empirical perspectives.

Relaxing these two assumptions gives a more general hypothesis, which I refer to as divergence theory—measuring

cost as the divergence between belief distributions over intended meanings before versus after observing a word:

Divergence theory—quantifying cost with belief-update size.

The processing cost of a wordw increases as a function of the amount of information it communicates, as

quantified by the Kullback-Leibler (KL) divergence (a.k.a. relative entropy) between the posterior distribution

pZ|w and the prior pZ . That is,
cost(w) = f

(
DKL(pZ|w ‖ pZ)

)
where f is a monotonically increasing function, andZ is the latent variable that is the target of inference—the

meaning of the utterance—about which beliefs are updated upon observingw.
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Figure 1: Diagram illustrating a toy example of surprisal and information gain of an observationw in context, with prior and
likelihood chosen such that surprisal markedly larger than KL divergence. The remaining bits constitute the portion of the
total information about the precise form of the observation that does not contribute to belief update. [Note that a minimally
different alternative example with a likelihood function that assigned probability 1 rather than 1/8 to the inferred meaning
would have resulted in surprisal being equal to KL at 2 bits.]

This hypothesis captures several key insights, detailed in this chapter. First, it formalizes the motivation for surprisal

theory, while generalizing it: The surprisal of a word provides an upper bound on the belief-update cost measured by

divergence. Second, it provides the flexibility to capture empirical phenomena where processing difficulty is low on

words that are unpredictable. Third, it offers a potential connection to a broad family of well-studied sampling-based

inference algorithms, whose complexity scales in such a divergence, and which form a promising yet under-explored

space of models for language processing.

In general, divergence between posterior and prior can be decomposed, pulling out a term for surprisal (as was first

shown in Levy, 2005). This decomposition can be arranged to describe a way of partitioning of the information

(bits) of surprisal of into two nonnegative quantities:

s(w)︷ ︸︸ ︷
log

1

p(w)
=

DKL(pZ|w ‖ pZ)︷ ︸︸ ︷
E

pZ|w

[
log

p(z | w)
p(z)

]
+

R(w)︷ ︸︸ ︷
E

pZ|w

[
log

1

p(w | z)

]
(1)

The first term,DKL(pZ|w ‖ pZ), quantifies the size of the Bayesian belief update induced upon observingw. The
second term, R(w), defined as the expected value of the likelihood over the posterior, quantifies the remaining

bits of information that do not contribute to belief update. This second quantity is zero if there is a deterministic

relationship between latent representations (Z) and observable words, however may be nonzero if this is not the case.

If surprising words will tend to cause commensurately large changes in beliefs about the meaning of the utterance,

then the magnitude of surprisal will tend to be be similar to that of KL divergence. This is always the case in the

original setting for surprisal theory, which explicitly assumed a probabilistic model in which there was a deterministic

relationship between latent linguistic structures over which belief distributions range, and the observable words

(Levy, 2008). Adopting the divergence theory hypothesis allows us to relax this assumption, offering the flexibility

to also capture situations where a word is highly unpredictable, yet does not incur a large change in beliefs.

Figure 1 illustrates the decomposition of surprisal in eq. 1 for a toy example where the magnitude of surprisal and

divergence differ markedly. This illustration is meant to demonstrate the way in which surprisal forms only a loose
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upper bound on belief update, in any Bayesian inference setting where the likelihood function is not deterministic.

In this example the value of the likelihood is small even for the meaning that is inferred, as a consequence of the

observed word’s containing a typographical error (such examples are modelled and explored empirically with a

reading-time experiment in Chapter 3).

As noted above, the hypothesis that cost scales as a function of divergence between prior and posterior distributions

reduces completely to standard linear surprisal theory if two assumptions are made. This framing naturally leads

to the question of whether these assumptions are justified. The following chapters investigate the theoretical and

empirical justifications for relaxing each of these assumptions of standard surprisal theory, one at a time. Chapter 2

investigates the form of the linking function, presenting novel theoretical arguments based on the computational

complexity of sampling algorithms, which predict a superlinear (rather than linear) linking function between belief-

update and processing cost. These predictions are tested and supported with results from nonlinear regressions fit

to model the effect on human reading times on surprisal, as estimated by pre-trained language models. Then, in

Chapter 3, I take up the question of whether the other assumption is justified, proposing that typographical errors

intuitively present an example of input which may be high surprisal but not be difficult to process. Such behaviour

cannot be explained under standard surprisal theory, but can be accounted for under the proposed divergence theory.

This intuition is evaluated with a self-paced reading study, using a variety of LMs as probability estimators.

Arguments and evidence for a superlinear linking function

Chapter 2 investigates the linking function between belief update size and processing cost. In order to focus on

the question of the linking function specifically, this chapter follows all previous literature in this area in explicitly

assuming that divergence is equivalent to surprisal (leaving aside the question about whether this assumption is

always merited, which is taken up as the focus of the subsequent chapter).

A processing algorithm can be conceived of as amechanism for building a representation of the posterior distribution

given an observation. In this probabilistic inference framework, the natural way in which computational cost might

be related to belief-update is if the algorithm gives priority to high-probability regions of the space of meanings,

when building its representation of the posterior. A broad class of algorithms which privilege likely meanings are

those which sample hypotheses from a prior distribution. This chapter contributes an analysis of some fundamental

examples of such algorithms, revealing that they predict runtime to increase in surprisal superlinearly, and with

increasing variance. This is also the case for more sophisticated algorithms based on importance sampling, where the

number of samples required scales exponentially in KL divergence (and therefore in surprisal, under the standard

assumption of their equivalence).

These predictions are notably in tension with the standard conception of surprisal theory, which assumes a linear

linking function, and constant variance. Indeed, a majority of previous studies have simply assumed a linear,

constant-variance linking function—either explicitly, or more often implicitly in their choice of statistical models for

analysis (Mitchell, 1984; Reichle et al., 2003; Demberg&Keller, 2008; Frank, 2009; FernandezMonsalve et al., 2012;

Frank et al., 2013; Lowder et al., 2018; Hao et al., 2020; van Schijndel & Linzen, 2021; Kuribayashi et al., 2022). A

smaller number of empirical papers have investigated the shape of the linking function directly (Smith & Levy, 2008,

2013; Goodkind & Bicknell, 2018; Wilcox et al., 2020; Hofmann et al., 2022). For the most part, these studies have

found support for the assumption of linearity. However, we argue there are a number of methodological reasons to

revisit these results, in addition to the theoretical motivation provided by our analysis of sampling algorithms.

The second part of Chapter 2 provides an empirical analysis of the linking function, using generalized additive

models (GAMs) to predict reading times on theNatural Stories corpus (Futrell et al., 2021), using surprisal estimates

from a variety of pre-trained language models.
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Figure 2: The effect of surprisal on self-paced reading time. Coloured lines are the fitted effects from the nonlinear GAMs,
dotted black lines beneath are from the corresponding linear control GAMs. Top two rows: effect of surprisal on mean RT,
with density plots of surprisal underlaid at the bottom. The top row (red) uses surprisals from LMs with full access previous
context, the second row (blue) uses LMs with access only to within-sentence context. Bottom two rows: as the first two, but
for the effect of surprisal on variance in RT (as log standard deviation).

As shown in fig. 2, our results give evidence that processing cost increases more steeply at higher levels of surprisal,

particularly for higher-quality language models with access to full context, suggesting a superlinear linking function.

We also find that variance in cost increases as a function of surprisal, consistentwith the predictions of sampling-based

inference algorithms. Further quantitative assessment confirms this general qualitative interpretation of our results:

The more accurate the LM used to calculate surprisal is, the more superlinear the effect of surprisal on reading

time. We interpret these results as evidence supporting the plausibility of sampling-based algorithms for sentence

processing.

When unpredictable does not mean difficult to process

Chapter 3 shifts focus away from the form of the linking function, to question the assumption that surprisal is

equivalent to KL divergence, which is implied if the relationship between latent structure and observed words is

deterministic. I argue that there are real-world situations in which we can expect surprisal to be only a loose upper

bound on the divergence from prior to posterior. Such cases would provide examples where the predictions of

standard surprisal theory about processing cost should differ most drastically from the proposed divergence theory.

An ideal situation in which to distinguish whether effort is driven by KL divergence or surprisal would be one

where the divergence is identical across conditions, but surprisal is manipulated. As illustrated in the toy example in

fig. 1, the divergence incurred between prior and posterior upon observing a word with a typographical error may

reasonably be expected to depend primarily on the meaning it contributes: Namely, the processing effort may be

small even if the observation is highly unpredictable. Comparing processing effort on a highly predictable word,

with and without a typographical error, provides precisely the kind of situation required to evaluate divergence

theory versus surprisal.

This chapter presents a self-paced reading time experiment on a data set of hand designed example sentences with
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target words in identical contexts for each of four conditions—either an expected or unexpected meaning, and with

or without a typographical error—as a case study to compare the predictions of surprisal versus KL divergence.

It presents a self-paced reading time experiment to assess human processing cost on these materials and compare

against surprisal estimates from a collection of LMs.

As shown in fig. 3, we found that while surprisal estimates from language models (right subplot) consistently

predicted high processing cost for words with typos (regardless of whether the underlying word was expected or

unexpected), human reading times (left subplot) showed a different pattern. In particular, typos on expected words

showed relatively little processing cost compared to typos on unexpected words, despite having high surprisal values.

This pattern in human processing cannot be explained by standard surprisal theory, but is precisely what is predicted

under divergence theory. Surprisal intrinsically cannot distinguish between words which are unpredictable due to

their conveying an unexpected meaning versus words that are unpredictable for some other reason, unrelated to the

meaning they convey (such as their containing a minor typographical error). Our results confirm that there exist

situations in which surprisal is not adequate as an explanation of processing cost for humans, which instead may be

explained by the size of the belief update, measured by KL divergence.

Comparing statistical and linguistic dependencies between words

In Chapter 4, the final content chapter, I put aside questions about incremental processing and cognitive effort, to

focus instead on the relationships between words that describe the structure of language. This chapter presents an

examination of the connection between linguistic structure and the distributional patterns of words, by comparing

the word-to-word relationships represented in linguistic dependency structures to those encoded by statistical

dependencies in context.

This investigation was motivated by the question of whether words that stand in linguistic dependency relationships

with each other tend to also be dependent on each other in terms of their co-occurrence frequency. We extracted tree

structures which maximize pointwise mutual information between words, in context, and compared these resulting
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tree structures to linguistic dependency structures.

In this study we found that the word-to-word arcs in the statistical dependency trees corresponded with linguistic

dependencies at a rate that was substantially above chance, and more so for the trees extracted using the language

models which take surrounding context into account. This finding confirmed a tendency also noted in earlier work

(Futrell et al., 2019) that words that are related to one another syntactically are likely to depend upon each other

statistically. However, our analysis revealed that as a method of dependency parsing, extracting statistical dependency

trees is in general only roughly as good as the simple baseline heuristic of connecting adjacent words. This finding

was robust across multiple languages and was not improved by using language models designed with an explicit

bias for hierarchical structure, nor by adopting a delexicalized variant to our method. We interpret these results

as evidence that while there are some superficial ways in which statistical dependence can be related broadly to

linguistic dependencies, we do not see evidence of a deep and systematic relationship.

Discussion

This dissertation makes several key contributions to our understanding of human language processing, bridging

cognitive psychology, computer science, and linguistics. The work develops and provides evidence for a fundamental

reframing of how we think about processing difficulty in language comprehension—advocating moving beyond

simple predictability in terms of surprisal to instead use models which consider the computational demands of

probabilistic inference about meaning.

This re-framing generalizes existing surprisal-based accounts whilemaintaining their coremotivations, and providing

a connection to existing results on the computational complexity inference algorithms. Theoretical predictions

within this framework were supported through complementary empirical studies: one showing evidence for super-

linear scaling of processing cost with surprisal (as predicted by sampling-based inference algorithms), and another

demonstrating that even highly unpredictable (high surprisal) strings can be easy to process when they don’t require

large updates to beliefs about meaning.

This research has several broader implications for cognitive science: It provides a bridge between computational-level

theories of processing difficulty and algorithmic implementations, suggesting sampling-based probabilistic inference

as a promising framework for modelling human sentence processing. It is situated along with other work in proba-

bilistic modelling applied to language processing, in demonstrating how ideas from information theory andmachine

learning can inform our understanding of core cognitive processes, while maintaining theoretical connections to

rational approaches to cognition. The finding that statistical dependencies between words correspond only loosely

with linguistic dependencies challenges simplistic assumptions about the relationship between distributional and

structural aspects of language.

The timing of this theoretical contribution is particularly relevant given the recent advent of large language models

capable of increasingly accurate probability estimates. As these models become more sophisticated at predicting

words in context, understanding the limitations of surprisal-based theories becomes crucial. This work proposes

that while predictability is important, it does not tell the whole story about processing cost.

Several directions for future work emerge from these findings. First, developing explicit computational models that

estimate divergence could provide more detailed predictions about processing patterns. Second, the framework

could be applied to explain other phenomena from the theoretical linguistics and psycholinguistics literature where

processing difficulty is smaller than would be expected under a surprisal-based model, such as grammatical illusions

(Wason & Reich, 1979; Wellwood et al., 2018; Muller & Phillips, 2020). Third, the connection with sampling

algorithms suggests implementations using such methods (as in Levy et al., 2008) are promising for building

process-level models, toward a more complete picture of language comprehension.
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