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The following is a description of the famous Banach-
Tarski paradox, which shows that you can conjure things
out of thin air …with the axiom of choice (you also need an
infinitely divisible object, but only on short loan, because
after you cut it up and reässemble it, you’ll have two!). It
assumes only basic knowledge of group theory, and is based
on my notes from a presentation by Nir Avni, in Mathe-
matics 122 (Algebra I), 10 Nov 2011, Harvard College.

Very brief summary
Take the unit ball in three dimensions. We will cut up

the ball into pieces, and use a group called F2 to shuffle the
pieces, using only rotations about the origin, and find them
reassembled into two identical copies of the original ball.

Yes, it works! In fact, nothing about this is contradic-
tory. It is just contracommonsensical.

Background
This is the part you can skim. I will lay out a theorem

to be proven, some definitions, and a couple propositions
to get started.

Theorem 1. There exists an injective homomorphism
ϕ :F2 ↪→SO3(R), where F2 is the free group on two letters,
and SO3(R) is the 3-dimensional special orthogonal group
over the reals.1

While this fact is very important, the proof is not
particularly relevant, so I left it for the Appendix.

Definition 1 (disjoint partition). A disjoint partition
of set S is a sequence of subsets, S1,...,Sn ⊆ S, such that
S1∪···∪Sn=S, and Si∩Sj =∅,∀i,j. Let such a partition
be written as S=S1⨿···⨿Sn.

Definition 2 (paradoxical). Suppose group G acts on2 set
X. This action is paradoxical if there are disjoint subsets
(not necessarily a partition) X1, ... ,Xn ⊆ X, some (not
necessarily distinct) elements g1, ... , gn ∈ G, and integer
1≤m≤n such that

g1X1⨿···⨿gmXm=gm+1Xm+1⨿···⨿gnXn=X.
This is called a paradoxical decomposition of X.

Here is an easy, useful, demonstation of a paradoxical
action:

Proposition 1. The action of F2 on itself by left
multiplication is paradoxical.

Proof. Let the two generating elements of F2 be called a
and b (i.e. F2=⟨{a,b}⟩).

Now let A+ = {words in F2 starting with a}, and
A− = {words in F2 starting with a−1}, and define sets
B+,B− likewise. These four subsets are disjoint, and the
only element of F2 not contained in one of the four is the
identity, 1, so F2={1}⨿A+⨿A−⨿B+⨿B−.

Now let a−1 act on A+. The set a−1A+ is precisely
the set of all words in F2 not beginning with a−1.

1If you are unfamiliar with these entities, see Appendix.
2An action of group G on set X (written G↷X) is a function

from G×X →X, satisfying associativity and preserving identities.
It should be a rather intuitive notion. Basically, it is just the formal
way to allow a group to manipulate a set; it specifies the operation
by which they interact.

That is, a−1A+ = {1} ⨿ A+ ⨿ B+ ⨿ B−. Likewise,
b−1B+={1}⨿A+⨿A−⨿B+.

Thus,
a−1A+⨿A−=b−1B+⨿B−=F2

is a paradoxical decomposition, and this action of F2↷F2

is paradoxical.

Now, a similar, but more general result, again about
the action of F2. This one will be directly useful to the
Banach-Tarski proof.

Proposition 2. Suppose that F2 acts on a set X such
that for all nonidentity g∈F2, g has no fixed points in X.
This action is paradoxical.

Proof. Invoke the axiom of choice to choose a single point
ofX from each orbit3 of under this action, and collect them
to form a set, Y . Let YA+

={g ·y |g∈A+,y∈Y }, and define
YA− ,YB+

,YB− likewise, for the subsetsA+,A−,B+,B−⊂F2

as defined in Proposition 1, above.
Now, the proof relies on the following two propositions:

1. YA+ ,YA− ,YB+ ,YB− ⊂X are all disjoint.
2. a−1YA+⨿YA− =b−1YB+⨿YB− =X.

Proof of 1. Assume that they are not all disjoint. Without
loss of generality, assume that YA+ ∩ YA− ̸= ∅. Then,
gy=g′y′ for some g∈A+,g

′∈A−,y,y
′∈Y , so (g′)−1gy=y′.

The element (g′)−1g ∈ F2, thus y,y′ ∈ Y are in the same
orbit, so y=y′, and is a fixed point of (g′)−1g.

By assumption, if (g′)−1g has a fixed point, it is the
idenity, so g′=g. But, then they cannot be one in A+ and
the other in A−. Contradiction.

Proof of 2. Showing X = a−1YA+
⨿YA− will be sufficient.

And, for this, it will be clearly be enough just to show that
X⊆a−1YA+

∪YA− .
Given some x ∈ X, the orbit of x intersects Y at a

point y, by assumption. Then there is some g ∈ F2 such
that gx= y, so x= g−1y. And, g−1 ∈ F2 = a−1A+⨿A−,
so there are only two possibilities: either g−1 ∈ a−1A+,
so g−1 = a−1h, for h ∈ A+ (in which case x = a−1hy so
x∈a−1YA+

), or g−1∈A− (in which case x∈YA−).

So, this action of F2 on X is paradoxical.

The Banach-Tarski Magic
The point is to show that action of SO3 on the unit ball

is paradoxical.
Since we already know something about making para-

doxical actions of F2, it would be a nice start to have F2

act on the unit ball in R3. By Theorem 1, there is an
injection ϕ :F2 ↪→SO3, so, if SO3 acts on set X, an action
of F2 on X can be formed just by applying ϕ first. Well,
here is a helpful fact, then:

Proposition 3. The group SO3(R) is isomorphic to the
group of rotations in R3.

3For any element x∈X, the orbit is defined as F2x={g ·x |g∈F2}.
Note that, of course, distinct elements in X will be in the same orbit,
and every orbit will have more than one element in it, by assumption.
There may be an uncountable infinity of orbits.
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[If you are used to thinking of SO3 as the rotation group
by definition, then no proof is necessary. If you are used to
it being defined abstractly as in Definition 4 below, then
see the proof in the Appendix.]

So SO3 acts simply as rotations on the unit ball. Nice.
Next, we make F2 act through rotations on the ball, and
show that it is a paradoxical action—one that can do the
magic of Banach-Tarski.

In order to do that, let’s first limit ourselves to the
surface of the ball, the 2-sphere, S2. We have an action
F2↷S2. Now, all we need to do is show that it is paradox-
ical, observe that it can be done with just rotations in 3
dimensions, and then extend inward from the sphere on
the surface to the entire, 3D, ball.

Proposition 4. Action by F2 on (most of) S2 is
paradoxical.

Proof. For each nonidentity g ∈ F2, ϕ(g) is a rotation
about some axis ℓg. This line intersects the sphere in two
points, ℓg∩S2={±pg}. Let D={±pg |g∈F2\{1}}.

Take g,h ∈ F2 \{1}. The axis of g is the line ℓg =Rpg.
And the axis of the conjugate of g by h (the element hgh−1)
is Rϕ(h)pg. But, this axis is the line ℓhgh−1 = Rphgh−1 ,
so, phgh−1 = ϕ(h)pg (with a possible sign difference).
Therefore, ϕ(h)D = D; that is to say, poles are mapped
only to poles.

The set S2\D is invariant under the action by F2, which
is without fixed points. So, by Proposition 2, this action
of F2↷S2\D is paradoxical.

And, since ϕ(F2) ⊂ SO3, we have that SO3↷S2 \D is
paradoxical. Now, to the main theorem!

Theorem 2. Action by SO3(R) on S2 is paradoxical.

Proof. The set D is countable. S2 is not. There are
uncountably many lines through the origin that are not
the axis of any rotation in ϕ(F2).

Since the interval [0,2π] is (continuous, and the contin-
uum is) uncountable, there exists a rotation r∈SO3, such
that D∩r(D)∩r2(D)∩···=∅.

Take
S2\D= S2\(D∩r(D)∩r2(D)∩...)

⨿(r(D)∩r2(D)∩...)
So, letting the identity act on the first part of the above

disjoint union, and letting r−1 act on the second, and
taking the union of the results, we get(

S2\(D∩r(D)∩...)
)
⨿(D∩r(D)∩...)=S2.

We have just created S2 by cutting up and rotating S2\D.
So, since SO3↷S2 \ D is paradoxical, just add this

procedure to the end of this paradoxical action, and we
have a paradoxical action of SO3↷S2.

So there you have it. You can take two subsets of points of
S2, rotate them, and turn them each into the entire sphere!

Now, to be complete, let’s extend this business inward
so we can do it to a three dimensional ball. This would
be trivial (just extend inwards), but the center point, {0},
creates a little difficulty, so I’ll be explicit:

Theorem 3. Action by rotation on the three dimensional
unit ball, B, is paradoxical.

Proof. Define a small 2-sphere S⊂B with {0}∈S. Taking
B = (B \ S)⨿ S, and acting on B \ S with the identity,

and on S in a familiar cut-up-and-rotate manner4 to get
S\{0}, we get (B\S)⨿(S\{0})=B\{0}.

Now, create the obvious map S2 → B \ {0} made by
extending inwards from each point on the surface. Given
the paradoxical decomposition S2 =X1⨿ ···⨿Xn, define
an analogous one B \ {0} = X̃1 ⨿ ··· ⨿ X̃n where each
X̃i={v∈B\{0}|v/∥v∥∈Xi}, for i=1,...,n.

We have now succeded in duplicating the ball minus the
center point. Cut-up-and-rotate one last time to get from
each copy of B\{0} to B, and the magic is complete.

Appendix
Definition 3 (Free group). Take a set S={a,b,c...}, and
call the elements “letters”. Now create S′ ⊃ S, by adding
“inverses” a−1, ..., and an “identity”, 1. The free group
F , spanned by S, is the set of all “words” (strings) of
nonidentity elements of S′, wherein no letter is adjacent
to its inverse, plus the identity; the group’s operation is
concatenation. The only rule is this: when concatenating,
if a letter appears adjacent to its inverse, the pair is
deleted. Explicitly, the group presentation is F = ⟨S | ∅⟩
( i.e. there are no relations—that is, the the identity cannot
be reached except trivially).

For S = {a,b}, the elements of the free group F2 = ⟨S⟩
are all the reduced words that can be made from these
letters: {1,a,b,a−1,...,ba−1b−1a...}.

Definition 4 (Special Orthogonal Group). The Or-
thogonal Group, On(F ) is defined as the set of all n× n
norm-preserving invertible matrices with entries in field F ,
with the operation of matrix multiplication. The Special
Orthogonal Group SOn(F ) is the subgroup of On(F )
comprised of all elements whose determinant is 1.

For F =R,n= 3, SO3(R) is the group of rotations in 3
dimensions, by Proposition 3.
Proof of Proposition 3 (SO3(R)∼= rotations in R3)
Proof. Suppose g∈SO3. The characteristic polynomial of
g has degree 3. Odd polynomials always have a root (by
the intermediate value theorem), so g has an eigenvalue
that is real. Let v be the eigenvector of this eigenvalue,
giving gv = λv, and thus ∥gv∥= ∥λ∥ since all elements of
SO3 have norm one, so λ=±1.

If λ=+1, then g is a rotation around the line Rv. There
are two cases:
(i) Only one eigenvalue is real: the three eigenvalues are

λ,z, z̄. The determinant det(g) = λzz̄ = 1, and zz̄ is
positive, so λ is positive.

(ii) There are three real eigenvalues, all ±1: their product,
det(g)=1, so at least one is +1.

Proof of Theorem 1 (∃ ϕ :F2 ↪→SO3(R))
Proof. Choose two orthogonal axes of R3, say the x and
the y. Let Rx, Ry ∈ SO3 be the matrices of rotation
about the x- and y- axes by angle θ = arccos(1/3). The
subgroup of SO3 freely generated by these two rotations
has the same structure as F2. So, define ϕ : F2 ↪→SO3 by
a 7→Rx,b 7→Ry,1 7→ Id.

(This is not the only map that would work; there are
many other possibilities, but the point is just that a map
exists. It doesn’t matter to us what it is, in particular.)

4in the proof of Theorem 3, we cut up S2 \D and rotated bits to
get S2. Just do this in reverse, with S,{0} instead of S2,D.
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