
Equivalenceofgenerative
systemsandconstraints:
finite state automata and monadic second-order logic over strings

  
2018-11-15

Outline

2/26

Two basic approaches
Minimalist Grammar - a generative system
Binding theory - a system of constraints
Both approaches

FSA and MSOL[S] over strings
Finite state automata
Strings as models
Strings and logic
The equivalence of FSAs and MSOL[S]

proof (→)
proof (←)

And so forth
And so on

1.0

Two basic approaches 3/26

1. Twobasic approaches

1.1 Minimalist Grammar - a generative system

Two basic approaches 4/26

Given some lexical items:

build :: =d d= v
rules :: n
trees :: n
these :: =n d
some :: =n d
∅ :: =n d

v

d

=n d
these

n
rules

d= v

=d d= v
build

d

=n d
some

n
trees

The rules are a formal system that describes a set of structures.

1.1 Minimalist Grammar - a generative system

Two basic approaches 4/26

Given some lexical items:

build :: =d d= v
rules :: n
trees :: n
these :: =n d
some :: =n d
∅ :: =n d

v

d

=n d
these

n
rules

d= v

=d d= v
build

d

=n d
some

n
trees

The rules are a formal system that describes a set of structures.

1.2 Binding theory - a system of constraints

Two basic approaches 5/26

Principle A: An anaphor must be bound locally.
Principle B: A pronoun must not be bound locally.
Principle C: An R-expression must not be bound.

S

it1

described the sentence1

S

the sentence1

described it1

S

the sentence1

described itself1
S

it1

described itself1

1.2 Binding theory - a system of constraints

Two basic approaches 5/26

Principle A: An anaphor must be bound locally.
Principle B: A pronoun must not be bound locally.
Principle C: An R-expression must not be bound.

S

it1

described the sentence1

S

the sentence1

described it1

S

the sentence1

described itself1
S

it1

described itself1

1.2 Binding theory - a system of constraints

Two basic approaches 5/26

Principle A: An anaphor must be bound locally.
Principle B: A pronoun must not be bound locally.
Principle C: An R-expression must not be bound.

S

it1

described the sentence1
Violates C!

S

the sentence1

described it1
Violates B!

S

the sentence1

described itself1
S

it1

described itself1

1.2 Binding theory - a system of constraints

Two basic approaches 6/26

Principle A: An anaphor must be bound by an element in argument
position within its governing category.
This is a logical statement about trees.

This can be formalized. E.g.:

(∀x,∀X)[+anaphor(x) ∧ GC(X, x)]→
(∃y)[X(y) ∧ A-position(y) ∧ c-command(x, y) ∧ coindexed(x, y)]]

This is (more or less) from Jim Rogers translation of GB into logic.
I won’t talk about this, but a similar, simpler version.

1.2 Binding theory - a system of constraints

Two basic approaches 6/26

Principle A: An anaphor must be bound by an element in argument
position within its governing category.
This is a logical statement about trees.
This can be formalized. E.g.:

(∀x,∀X)[+anaphor(x) ∧ GC(X, x)]→
(∃y)[X(y) ∧ A-position(y) ∧ c-command(x, y) ∧ coindexed(x, y)]]

This is (more or less) from Jim Rogers translation of GB into logic.
I won’t talk about this, but a similar, simpler version.

1.2 Binding theory - a system of constraints

Two basic approaches 6/26

Principle A: An anaphor must be bound by an element in argument
position within its governing category.
This is a logical statement about trees.
This can be formalized. E.g.:

(∀x,∀X)[+anaphor(x) ∧ GC(X, x)]→
(∃y)[X(y) ∧ A-position(y) ∧ c-command(x, y) ∧ coindexed(x, y)]]

This is (more or less) from Jim Rogers translation of GB into logic.
I won’t talk about this, but a similar, simpler version.

1.3 Both approaches

Two basic approaches 7/26

Define a set of structures.

Linguistic theories are oen formulated as a mix of both of these
approaches.

1. Generative systems
Phrase Structure Grammar
Minimalism
…

2. Constraint-based systems
Government and Binding
…

Are these equivalent? Can one be translated into the other? If yes…
efficiently?

1.3 Both approaches

Two basic approaches 7/26

Define a set of structures.
Linguistic theories are oen formulated as a mix of both of these
approaches.

1. Generative systems
Phrase Structure Grammar
Minimalism
…

2. Constraint-based systems
Government and Binding
…

Are these equivalent? Can one be translated into the other? If yes…
efficiently?

1.3 Both approaches

Two basic approaches 7/26

Define a set of structures.
Linguistic theories are oen formulated as a mix of both of these
approaches.

1. Generative systems
Phrase Structure Grammar
Minimalism
…

2. Constraint-based systems
Government and Binding
…

Are these equivalent? Can one be translated into the other? If yes…
efficiently?

1.3 Both approaches

Two basic approaches 7/26

Define a set of structures.
Linguistic theories are oen formulated as a mix of both of these
approaches.

1. Generative systems
Phrase Structure Grammar
Minimalism
…

2. Constraint-based systems
Government and Binding
…

Are these equivalent? Can one be translated into the other?

If yes…
efficiently?

1.3 Both approaches

Two basic approaches 7/26

Define a set of structures.
Linguistic theories are oen formulated as a mix of both of these
approaches.

1. Generative systems
Phrase Structure Grammar
Minimalism
…

2. Constraint-based systems
Government and Binding
…

Are these equivalent? Can one be translated into the other? If yes…
efficiently?

2.0

FSA and MSOL[S] over strings 8/26

2. FSAandMSOL[S]
over strings

2.1 Finite state automata

FSA and MSOL[S] over strings 9/26

A finite state automaton is a simple generative system.

A minimalist grammar where all lexical items are of the following
form (having at most one selectional feature only on the right):

a :: (=y) x

is a finite state automaton.

2.1 Finite state automata

FSA and MSOL[S] over strings 9/26

A finite state automaton is a simple generative system.
A minimalist grammar where all lexical items are of the following
form (having at most one selectional feature only on the right):

a :: (=y) x

is a finite state automaton.

2.1 Finite state automata

FSA and MSOL[S] over strings 10/26

For example, let V = {a, b}.
Take FSA A:

q0 q1

b

a

a

b

Accepts any string on V∗ with an
even number of as.

Grammar for this language:

a :: =q1 q0
a :: =q0 q1
b :: =q0 q0
b :: =q1 q1
ε :: q0
q0

=q1 q0
a

q1

=q1 q1
b

q1

=q0 q1
a

q0
ε

2.1 Finite state automata

FSA and MSOL[S] over strings 10/26

For example, let V = {a, b}.
Take FSA A:

q0 q1

b

a

a

b

Accepts any string on V∗ with an
even number of as.

Grammar for this language:

a :: =q1 q0
a :: =q0 q1
b :: =q0 q0
b :: =q1 q1
ε :: q0
q0

=q1 q0
a

q1

=q1 q1
b

q1

=q0 q1
a

q0
ε

2.1 Finite state automata

FSA and MSOL[S] over strings 10/26

For example, let V = {a, b}.
Take FSA A:

q0 q1

b

a

a

b

Accepts any string on V∗ with an
even number of as.

Grammar for this language:

a :: =q1 q0
a :: =q0 q1
b :: =q0 q0
b :: =q1 q1
ε :: q0

q0

=q1 q0
a

q1

=q1 q1
b

q1

=q0 q1
a

q0
ε

2.1 Finite state automata

FSA and MSOL[S] over strings 10/26

For example, let V = {a, b}.
Take FSA A:

q0 q1

b

a

a

b

Accepts any string on V∗ with an
even number of as.

Grammar for this language:

a :: =q1 q0
a :: =q0 q1
b :: =q0 q0
b :: =q1 q1
ε :: q0
q0

=q1 q0
a

q1

=q1 q1
b

q1

=q0 q1
a

q0
ε

2.1 Finite state automata

FSA and MSOL[S] over strings 11/26

The class of strings accepted by finite state automata can also be
descibed in terms of constraints.

“there are an even number of a’s in the string”

estion:
given a language (a set of strings) generated by a FSA, what kind of
constraints are needed to define it?

Answer:
If a language can be generated by a FSA, it can be defined using
constraints wrien in monadic second-order logic (with a successor).

2.1 Finite state automata

FSA and MSOL[S] over strings 11/26

The class of strings accepted by finite state automata can also be
descibed in terms of constraints.

“there are an even number of a’s in the string”

estion:
given a language (a set of strings) generated by a FSA, what kind of
constraints are needed to define it?

Answer:
If a language can be generated by a FSA, it can be defined using
constraints wrien in monadic second-order logic (with a successor).

2.1 Finite state automata

FSA and MSOL[S] over strings 11/26

The class of strings accepted by finite state automata can also be
descibed in terms of constraints.

“there are an even number of a’s in the string”

estion:
given a language (a set of strings) generated by a FSA, what kind of
constraints are needed to define it?

Answer:
If a language can be generated by a FSA, it can be defined using
constraints wrien in monadic second-order logic (with a successor).

2.1 Finite state automata

FSA and MSOL[S] over strings 12/26

In fact, this generative system (any FSA you can build) and this
system of constraints (anything you can write in the logic MSOL[S])
are equivalent in expressive power: they both describe the same
class of languages.

First, to formalize:

FSA
Strings as models
MSOL

2.1 Finite state automata

FSA and MSOL[S] over strings 12/26

In fact, this generative system (any FSA you can build) and this
system of constraints (anything you can write in the logic MSOL[S])
are equivalent in expressive power: they both describe the same
class of languages.
First, to formalize:

FSA
Strings as models
MSOL

2.1 Finite state automata

FSA and MSOL[S] over strings 13/26

A finite state automaton A = (V,Q, q0, F,∆), consisting of

the vocabulary V
Q is a finite set of states q0, q1, . . . , qk

q0 ∈ Q is the initial state
F ⊆ Q is set of final (or accepting) states

∆ ⊆ Q× V× Q is the transition relation

A string σ = a0 . . . an−1 is accepted by A if there is a successful run
of A on σ, that is, a sequence ρ = ρ0 . . . ρn of states, such that
ρ0 = q0, ρn ∈ F, and (ρi, ai, ρi+1) ∈ ∆ for i < n.

ρi ρi+1
ai.

A language is accepted by A if all its strings are accepted.

2.1 Finite state automata

FSA and MSOL[S] over strings 13/26

A finite state automaton A = (V,Q, q0, F,∆), consisting of

the vocabulary V
Q is a finite set of states q0, q1, . . . , qk

q0 ∈ Q is the initial state
F ⊆ Q is set of final (or accepting) states

∆ ⊆ Q× V× Q is the transition relation
A string σ = a0 . . . an−1 is accepted by A if there is a successful run
of A on σ, that is, a sequence ρ = ρ0 . . . ρn of states, such that
ρ0 = q0, ρn ∈ F, and (ρi, ai, ρi+1) ∈ ∆ for i < n.

ρi ρi+1
ai.

A language is accepted by A if all its strings are accepted.

2.2 Strings as models

FSA and MSOL[S] over strings 14/26

Let V be a finite vocabulary and σ = a0 . . . an−1 be a string over V.
In order to interpret logical statements about this string, create a
string model of σ:

σ = (pos(σ), Sσ, (Qσ
a)a∈V) (1)

Where pos(σ) is {0, 1, . . . , n− 1}, the set of word positions in the
string , Sσ is the natural successor relation defined on these
integers, and Qσ

a is a unary predicates collecting for a ∈ V the
positions in pos(σ) where a occurs.

E.g.
bab = ({0, 1, 2}, Sbab,Qbab

a = {1},Qbab
b = {0, 2})

2.2 Strings as models

FSA and MSOL[S] over strings 14/26

Let V be a finite vocabulary and σ = a0 . . . an−1 be a string over V.
In order to interpret logical statements about this string, create a
string model of σ:

σ = (pos(σ), Sσ, (Qσ
a)a∈V) (1)

Where pos(σ) is {0, 1, . . . , n− 1}, the set of word positions in the
string , Sσ is the natural successor relation defined on these
integers, and Qσ

a is a unary predicates collecting for a ∈ V the
positions in pos(σ) where a occurs.
E.g.

bab = ({0, 1, 2}, Sbab,Qbab
a = {1},Qbab

b = {0, 2})

2.3 Strings and logic

FSA and MSOL[S] over strings 15/26

Given string models over V, statements about the strings can be
formalized in logic.
First-order logic:

variables
x, y, xi, . . . (range over positions in the string models)

X,Y,Xi, . . . (range over sets of positions)

atomic formulæ:
x = y (equality)
S(x, y) (the successor of x is y)
Qa(x), a ∈ V (position x has label a)

X(x) (set X contains element x)

connectives: ∧,∨,¬,→,↔ and quantifiers: ∃, ∀

2.3 Strings and logic

FSA and MSOL[S] over strings 15/26

Given string models over V, statements about the strings can be
formalized in logic.
Monadic second-order logic:

variables
x, y, xi, . . . (range over positions in the string models)
X,Y,Xi, . . . (range over sets of positions)

atomic formulæ:
x = y (equality)
S(x, y) (the successor of x is y)
Qa(x), a ∈ V (position x has label a)
X(x) (set X contains element x)

connectives: ∧,∨,¬,→,↔ and quantifiers: ∃, ∀

2.3 Strings and logic

FSA and MSOL[S] over strings 16/26

For example: take the first-order sentence
ϕ = ∃x.[Qa(x) ∧ ¬∃y.S(x, y)] “the string ends in a”

To evaluate this on string ba: take the model ba, and see whether
∃x.[Qba

a (x) ∧ ¬∃y.Sba(x, y)] is true. ✓
So, we say ba |= ϕ: ba models ϕ.

2.3 Strings and logic

FSA and MSOL[S] over strings 16/26

For example: take the first-order sentence
ϕ = ∃x.[Qa(x) ∧ ¬∃y.S(x, y)] “the string ends in a”
To evaluate this on string ba: take the model ba, and see whether
∃x.[Qba

a (x) ∧ ¬∃y.Sba(x, y)] is true.

✓
So, we say ba |= ϕ: ba models ϕ.

2.3 Strings and logic

FSA and MSOL[S] over strings 16/26

For example: take the first-order sentence
ϕ = ∃x.[Qa(x) ∧ ¬∃y.S(x, y)] “the string ends in a”
To evaluate this on string ba: take the model ba, and see whether
∃x.[Qba

a (x) ∧ ¬∃y.Sba(x, y)] is true. ✓

So, we say ba |= ϕ: ba models ϕ.

2.3 Strings and logic

FSA and MSOL[S] over strings 16/26

For example: take the first-order sentence
ϕ = ∃x.[Qa(x) ∧ ¬∃y.S(x, y)] “the string ends in a”
To evaluate this on string ba: take the model ba, and see whether
∃x.[Qba

a (x) ∧ ¬∃y.Sba(x, y)] is true. ✓
So, we say ba |= ϕ: ba models ϕ.

2.3 Strings and logic

FSA and MSOL[S] over strings 17/26

q0 q1

b
a
a

b

To capture the same language with a MSOL constraint:
First, define the ordering “<”:
x < y := ¬(x = y) ∧ ∀X[X(x) ∧ ∀z∀w(X(z) ∧ S(z,w)→ X(w))→ X(y)] and
define some shorthand:
ϕ(firsta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.z < x ∧ Qa(z))
ϕ(lasta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.x < z ∧ Qa(z))
nexta(x, y) := Qa(x) ∧ Qa(y) ∧ (¬∃z.x < z ∧ z < y ∧ Qa(z))

∀x.Qa(x)→ ∃X.X(firsta)
∧ ∀y∀z.[nexta(y, z)→ (X(y)↔ ¬X(z))]
∧ ¬X(lasta)

2.3 Strings and logic

FSA and MSOL[S] over strings 17/26

q0 q1

b
a
a

b

To capture the same language with a MSOL constraint:

First, define the ordering “<”:
x < y := ¬(x = y) ∧ ∀X[X(x) ∧ ∀z∀w(X(z) ∧ S(z,w)→ X(w))→ X(y)] and
define some shorthand:
ϕ(firsta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.z < x ∧ Qa(z))
ϕ(lasta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.x < z ∧ Qa(z))
nexta(x, y) := Qa(x) ∧ Qa(y) ∧ (¬∃z.x < z ∧ z < y ∧ Qa(z))

∀x.Qa(x)→ ∃X.X(firsta)
∧ ∀y∀z.[nexta(y, z)→ (X(y)↔ ¬X(z))]
∧ ¬X(lasta)

2.3 Strings and logic

FSA and MSOL[S] over strings 17/26

q0 q1

b
a
a

b

To capture the same language with a MSOL constraint:
First, define the ordering “<”:

x < y := ¬(x = y) ∧ ∀X[X(x) ∧ ∀z∀w(X(z) ∧ S(z,w)→ X(w))→ X(y)] and
define some shorthand:
ϕ(firsta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.z < x ∧ Qa(z))
ϕ(lasta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.x < z ∧ Qa(z))
nexta(x, y) := Qa(x) ∧ Qa(y) ∧ (¬∃z.x < z ∧ z < y ∧ Qa(z))

∀x.Qa(x)→ ∃X.X(firsta)
∧ ∀y∀z.[nexta(y, z)→ (X(y)↔ ¬X(z))]
∧ ¬X(lasta)

2.3 Strings and logic

FSA and MSOL[S] over strings 17/26

q0 q1

b
a
a

b

To capture the same language with a MSOL constraint:
First, define the ordering “<”:
x < y := ¬(x = y) ∧ ∀X[X(x) ∧ ∀z∀w(X(z) ∧ S(z,w)→ X(w))→ X(y)]

and
define some shorthand:
ϕ(firsta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.z < x ∧ Qa(z))
ϕ(lasta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.x < z ∧ Qa(z))
nexta(x, y) := Qa(x) ∧ Qa(y) ∧ (¬∃z.x < z ∧ z < y ∧ Qa(z))

∀x.Qa(x)→ ∃X.X(firsta)
∧ ∀y∀z.[nexta(y, z)→ (X(y)↔ ¬X(z))]
∧ ¬X(lasta)

2.3 Strings and logic

FSA and MSOL[S] over strings 17/26

q0 q1

b
a
a

b

To capture the same language with a MSOL constraint:
First, define the ordering “<”:
x < y := ¬(x = y) ∧ ∀X[X(x) ∧ ∀z∀w(X(z) ∧ S(z,w)→ X(w))→ X(y)] and
define some shorthand:
ϕ(firsta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.z < x ∧ Qa(z))
ϕ(lasta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.x < z ∧ Qa(z))
nexta(x, y) := Qa(x) ∧ Qa(y) ∧ (¬∃z.x < z ∧ z < y ∧ Qa(z))

∀x.Qa(x)→ ∃X.X(firsta)
∧ ∀y∀z.[nexta(y, z)→ (X(y)↔ ¬X(z))]
∧ ¬X(lasta)

2.3 Strings and logic

FSA and MSOL[S] over strings 17/26

q0 q1

b
a
a

b

To capture the same language with a MSOL constraint:
First, define the ordering “<”:
x < y := ¬(x = y) ∧ ∀X[X(x) ∧ ∀z∀w(X(z) ∧ S(z,w)→ X(w))→ X(y)] and
define some shorthand:
ϕ(firsta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.z < x ∧ Qa(z))
ϕ(lasta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.x < z ∧ Qa(z))
nexta(x, y) := Qa(x) ∧ Qa(y) ∧ (¬∃z.x < z ∧ z < y ∧ Qa(z))

∀x.Qa(x)→ ∃X.X(firsta)
∧ ∀y∀z.[nexta(y, z)→ (X(y)↔ ¬X(z))]
∧ ¬X(lasta)

2.4 The equivalence of FSAs and MSOL[S]

FSA and MSOL[S] over strings 18/26

Theorem
A language L of finite-length strings is can be generated by a FSA iff
L is definable in MSOL[S].

The proof consists of showing that
(→) given an automaton, we can write a formula, and
(←) given a formula, we can construct an automaton.

2.4 The equivalence of FSAs and MSOL[S]

FSA and MSOL[S] over strings 18/26

Theorem
A language L of finite-length strings is can be generated by a FSA iff
L is definable in MSOL[S].

The proof consists of showing that
(→) given an automaton, we can write a formula, and
(←) given a formula, we can construct an automaton.

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 19/26

Given automaton A = (V,Q, q0, F,∆), write ϕA, a
MSOL[S]-sentence (a formula with no free variables) such that
σ |= ϕA for any string σ that is accepted by A.

That is, ϕA must express in σ the existence of an accepting run of A
on σ.
Strategy: Associate a set variable Xi with each state qi in A. This
set variable denotes the positions on the string when A assumes
state qi.

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 19/26

Given automaton A = (V,Q, q0, F,∆), write ϕA, a
MSOL[S]-sentence (a formula with no free variables) such that
σ |= ϕA for any string σ that is accepted by A.
That is, ϕA must express in σ the existence of an accepting run of A
on σ.

Strategy: Associate a set variable Xi with each state qi in A. This
set variable denotes the positions on the string when A assumes
state qi.

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 19/26

Given automaton A = (V,Q, q0, F,∆), write ϕA, a
MSOL[S]-sentence (a formula with no free variables) such that
σ |= ϕA for any string σ that is accepted by A.
That is, ϕA must express in σ the existence of an accepting run of A
on σ.
Strategy: Associate a set variable Xi with each state qi in A. This
set variable denotes the positions on the string when A assumes
state qi.

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

if A has k states, we can use set variables X0, . . . ,X to describe
successful runs:

the Xi’s are pairwise disjoint sets over the positions (at
any position in the string, the automaton is in exactly one
state)

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

if A has k states, we can use set variables X0, . . . ,X to describe
successful runs:

the Xi’s are pairwise disjoint sets over the positions (at
any position in the string, the automaton is in exactly one
state)
at the first position, the automaton is in initial state q0

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

if A has k states, we can use set variables X0, . . . ,X to describe
successful runs:

the Xi’s are pairwise disjoint sets over the positions (at
any position in the string, the automaton is in exactly one
state)
at the first position, the automaton is in initial state q0
for any pair of successive positions in the string x, y, there
is a valid transition given by the states at positions x and
y, and the label at position x

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

if A has k states, we can use set variables X0, . . . ,X to describe
successful runs:

the Xi’s are pairwise disjoint sets over the positions (at
any position in the string, the automaton is in exactly one
state)
at the first position, the automaton is in initial state q0
for any pair of successive positions in the string x, y, there
is a valid transition given by the states at positions x and
y, and the label at position x
at the final position there is a valid transition into an
accepting state

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

∃X0, . . . , ∃Xk

[
the Xi’s are pairwise disjoint sets over the positions (at
any position in the string, the automaton is in exactly one
state)
at the first position, the automaton is in initial state q0
for any pair of successive positions in the string x, y, there
is a valid transition given by the states at positions x and
y, and the label at position x
at the final position there is a valid transition into an
accepting state

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

∃X0, . . . , ∃Xk

[
∧

i̸=j ∀x¬(Xi(x) ∧ Xj(x))
at the first position, the automaton is in initial state q0
for any pair of successive positions in the string x, y, there
is a valid transition given by the states at positions x and
y, and the label at position x
at the final position there is a valid transition into an
accepting state

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

∃X0, . . . , ∃Xk

[
∧

i̸=j ∀x¬(Xi(x) ∧ Xj(x))

∀x(¬∃yS(y, x)→ X0(x))
for any pair of successive positions in the string x, y, there
is a valid transition given by the states at positions x and
y, and the label at position x
at the final position there is a valid transition into an
accepting state

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

∃X0, . . . , ∃Xk

[
∧

i̸=j ∀x¬(Xi(x) ∧ Xj(x))

∀x(¬∃yS(y, x)→ X0(x))
∀x∀y(S(x, y)→

∨
(qi,a,qj)∈∆ Xi(x) ∧ Qa(x) ∧ Xj(y))

at the final position there is a valid transition into an
accepting state

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

∃X0, . . . , ∃Xk

[
∧

i̸=j ∀x¬(Xi(x) ∧ Xj(x))

∀x(¬∃yS(y, x)→ X0(x))
∀x∀y(S(x, y)→

∨
(qi,a,qj)∈∆ Xi(x) ∧ Qa(x) ∧ Xj(y))

∀x(¬∃yS(x, y)→
∨

(qi,a,qj)∈∆,qj∈F Xi(x) ∧ Qa(x))
]

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 20/26

∃X0, . . . , ∃Xk

[
∧

i̸=j ∀x¬(Xi(x) ∧ Xj(x))

∀x(¬∃yS(y, x)→ X0(x))
∀x∀y(S(x, y)→

∨
(qi,a,qj)∈∆ Xi(x) ∧ Qa(x) ∧ Xj(y))

∀x(¬∃yS(x, y)→
∨

(qi,a,qj)∈∆,qj∈F Xi(x) ∧ Qa(x))
]

The form of this sentence: automata normal form.

2.4 The equivalence of FSAs and MSOL[S] proof (→)

FSA and MSOL[S] over strings 21/26

A accepts/generates a string σ iff

σ |= ∃X0 . . . ∃Xk

[∧
i̸=j

∀x¬(Xi(x) ∧ Xj(x))

∧ ∀x(¬∃yS(y, x)→ X0(x))

∧ ∀x∀y(S(x, y)→
∨

(qi,a,qj)∈∆

Xi(x) ∧ Qa(x) ∧ Xj(y))

∧ ∀x(¬∃yS(x, y)→
∨

(qi,a,qj)∈∆,qj∈F

Xi(x) ∧ Qa(x))
]

2.4 The equivalence of FSAs and MSOL[S] proof (←)

FSA and MSOL[S] over strings 22/26

In the other direction, show that given a formula ϕ of MSOL[S], we
can construct an FSA Aϕ, such that for any string which models the
formula σ |= ϕ, this string is accepted by Aϕ.

Strategy: A proof by induction on formulas. Show that for every
atomic formula, there is a simple FSA that recognizes precisely the
set of strings defined by that atomic formula.
For the inductive step show that this property is closed under
connectives and quantification.

2.4 The equivalence of FSAs and MSOL[S] proof (←)

FSA and MSOL[S] over strings 22/26

In the other direction, show that given a formula ϕ of MSOL[S], we
can construct an FSA Aϕ, such that for any string which models the
formula σ |= ϕ, this string is accepted by Aϕ.
Strategy: A proof by induction on formulas. Show that for every
atomic formula, there is a simple FSA that recognizes precisely the
set of strings defined by that atomic formula.
For the inductive step show that this property is closed under
connectives and quantification.

2.4 The equivalence of FSAs and MSOL[S] proof (←)

FSA and MSOL[S] over strings 23/26

Work with the expressively equivalent (but syntactically simpler)
MSOL0[S]:

has only set variables (first order variables x are converted
to singleton set variables X).
connectives ¬ and ∨, and quantification ∃.

This means the proof must just

construct an FSA that is equivalent to each atomic
formula of MSOL0[S]
show that the class of recognizable languages is closed
under complement and union and projection

2.5 And so forth

FSA and MSOL[S] over strings 24/26

Consequences and corollaries:

Any MSOL[S] formula can be wrien as one in ‘automata
normal form’.

General translation of logic to automata: hard. In
general, it has been shown that time-complexity of any
algorithm converting MSOL[S]→ automata cannot be
bounded by any elementary function (there is an
unbounded family of formulæ the corresponding
automaton’s number of states grows with length of

formula like 2 ↑↑ n = 22
. .

.2︸︷︷︸
n

. That’s a hey lower bound.

2.5 And so forth

FSA and MSOL[S] over strings 24/26

Consequences and corollaries:

Any MSOL[S] formula can be wrien as one in ‘automata
normal form’.
General translation of logic to automata: hard.

In
general, it has been shown that time-complexity of any
algorithm converting MSOL[S]→ automata cannot be
bounded by any elementary function (there is an
unbounded family of formulæ the corresponding
automaton’s number of states grows with length of

formula like 2 ↑↑ n = 22
. .

.2︸︷︷︸
n

. That’s a hey lower bound.

2.5 And so forth

FSA and MSOL[S] over strings 24/26

Consequences and corollaries:

Any MSOL[S] formula can be wrien as one in ‘automata
normal form’.
General translation of logic to automata: hard. In
general, it has been shown that time-complexity of any
algorithm converting MSOL[S]→ automata cannot be
bounded by any elementary function (there is an
unbounded family of formulæ the corresponding
automaton’s number of states grows with length of

formula like 2 ↑↑ n = 22
. .

.2︸︷︷︸
n

. That’s a hey lower bound.

2.6 And so on

FSA and MSOL[S] over strings 25/26

So, MSOL is a nice way to describe languages that can be accepted
by FSAs.

Translating in general is hard, but… most things that can
be said in logic are not things we want to say.

2.6 And so on

FSA and MSOL[S] over strings 25/26

So, MSOL is a nice way to describe languages that can be accepted
by FSAs. Translating in general is hard, but… most things that can
be said in logic are not things we want to say.

FSA and MSOL[S] over strings 26/26

Thanks!

	Two basic approaches
	Minimalist Grammar - a generative system
	Binding theory - a system of constraints
	Both approaches

	FSA and MSOL[S] over strings
	Finite state automata
	Strings as models
	Strings and logic
	The equivalence of FSAs and MSOL[S]
	And so forth
	And so on

