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build :: =d d= v
rules :: n
trees :: n
these :: =n d
some :: =n d
∅ :: =n d

v

d

=n d
these

n
rules

d= v

=d d= v
build

d

=n d
some

n
trees

The rules are a formal system that describes a set of structures.
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Principle A: An anaphor must be bound locally.
Principle B: A pronoun must not be bound locally.
Principle C: An R-expression must not be bound.
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Principle A: An anaphor must be bound by an element in argument
position within its governing category.
This is a logical statement about trees.

This can be formalized. E.g.:

(∀x,∀X)[+anaphor(x) ∧ GC(X, x)]→
(∃y)[X(y) ∧ A-position(y) ∧ c-command(x, y) ∧ coindexed(x, y)]]

This is (more or less) from Jim Rogers translation of GB into logic.
I won’t talk about this, but a similar, simpler version.
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Define a set of structures.

Linguistic theories are oen formulated as a mix of both of these
approaches.

1. Generative systems
Phrase Structure Grammar
Minimalism
…

2. Constraint-based systems
Government and Binding
…

Are these equivalent? Can one be translated into the other? If yes…
efficiently?
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2. FSAandMSOL[S]
over strings



2.1 Finite state automata
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A finite state automaton is a simple generative system.

A minimalist grammar where all lexical items are of the following
form (having at most one selectional feature only on the right):

a :: (=y) x

is a finite state automaton.
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For example, let V = {a, b}.
Take FSA A:

q0 q1

b

a

a

b

Accepts any string on V∗ with an
even number of as.

Grammar for this language:

a :: =q1 q0
a :: =q0 q1
b :: =q0 q0
b :: =q1 q1
ε :: q0
q0

=q1 q0
a

q1

=q1 q1
b

q1

=q0 q1
a

q0
ε



2.1 Finite state automata

FSA and MSOL[S] over strings 10/26

For example, let V = {a, b}.
Take FSA A:

q0 q1

b

a

a

b

Accepts any string on V∗ with an
even number of as.

Grammar for this language:

a :: =q1 q0
a :: =q0 q1
b :: =q0 q0
b :: =q1 q1
ε :: q0
q0

=q1 q0
a

q1

=q1 q1
b

q1

=q0 q1
a

q0
ε



2.1 Finite state automata

FSA and MSOL[S] over strings 10/26

For example, let V = {a, b}.
Take FSA A:

q0 q1

b

a

a

b

Accepts any string on V∗ with an
even number of as.

Grammar for this language:

a :: =q1 q0
a :: =q0 q1
b :: =q0 q0
b :: =q1 q1
ε :: q0

q0

=q1 q0
a

q1

=q1 q1
b

q1

=q0 q1
a

q0
ε



2.1 Finite state automata

FSA and MSOL[S] over strings 10/26

For example, let V = {a, b}.
Take FSA A:

q0 q1

b

a

a

b

Accepts any string on V∗ with an
even number of as.

Grammar for this language:

a :: =q1 q0
a :: =q0 q1
b :: =q0 q0
b :: =q1 q1
ε :: q0
q0

=q1 q0
a

q1

=q1 q1
b

q1

=q0 q1
a

q0
ε



2.1 Finite state automata

FSA and MSOL[S] over strings 11/26

The class of strings accepted by finite state automata can also be
descibed in terms of constraints.

“there are an even number of a’s in the string”

estion:
given a language (a set of strings) generated by a FSA, what kind of
constraints are needed to define it?

Answer:
If a language can be generated by a FSA, it can be defined using
constraints wrien in monadic second-order logic (with a successor).
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FSA and MSOL[S] over strings 12/26

In fact, this generative system (any FSA you can build) and this
system of constraints (anything you can write in the logic MSOL[S])
are equivalent in expressive power: they both describe the same
class of languages.

First, to formalize:

FSA
Strings as models
MSOL



2.1 Finite state automata

FSA and MSOL[S] over strings 12/26

In fact, this generative system (any FSA you can build) and this
system of constraints (anything you can write in the logic MSOL[S])
are equivalent in expressive power: they both describe the same
class of languages.
First, to formalize:

FSA
Strings as models
MSOL



2.1 Finite state automata

FSA and MSOL[S] over strings 13/26

A finite state automaton A = (V,Q, q0, F,∆), consisting of

the vocabulary V
Q is a finite set of states q0, q1, . . . , qk

q0 ∈ Q is the initial state
F ⊆ Q is set of final (or accepting) states

∆ ⊆ Q× V× Q is the transition relation

A string σ = a0 . . . an−1 is accepted by A if there is a successful run
of A on σ, that is, a sequence ρ = ρ0 . . . ρn of states, such that
ρ0 = q0, ρn ∈ F, and (ρi, ai, ρi+1) ∈ ∆ for i < n.

ρi ρi+1
ai. . . . . .

A language is accepted by A if all its strings are accepted.
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Let V be a finite vocabulary and σ = a0 . . . an−1 be a string over V.
In order to interpret logical statements about this string, create a
string model of σ:

σ = (pos(σ), Sσ, (Qσ
a )a∈V) (1)

Where pos(σ) is {0, 1, . . . , n− 1}, the set of word positions in the
string , Sσ is the natural successor relation defined on these
integers, and Qσ

a is a unary predicates collecting for a ∈ V the
positions in pos(σ) where a occurs.

E.g.
bab = ({0, 1, 2}, Sbab,Qbab

a = {1},Qbab
b = {0, 2})
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Given string models over V, statements about the strings can be
formalized in logic.
First-order logic:

variables
x, y, xi, . . . (range over positions in the string models)

X,Y,Xi, . . . (range over sets of positions)

atomic formulæ:
x = y (equality)
S(x, y) (the successor of x is y)
Qa(x), a ∈ V (position x has label a)

X(x) (set X contains element x)

connectives: ∧,∨,¬,→,↔ and quantifiers: ∃, ∀
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Given string models over V, statements about the strings can be
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variables
x, y, xi, . . . (range over positions in the string models)
X,Y,Xi, . . . (range over sets of positions)

atomic formulæ:
x = y (equality)
S(x, y) (the successor of x is y)
Qa(x), a ∈ V (position x has label a)
X(x) (set X contains element x)

connectives: ∧,∨,¬,→,↔ and quantifiers: ∃, ∀



2.3 Strings and logic
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For example: take the first-order sentence
ϕ = ∃x.[Qa(x) ∧ ¬∃y.S(x, y)] “the string ends in a”

To evaluate this on string ba: take the model ba, and see whether
∃x.[Qba

a (x) ∧ ¬∃y.Sba(x, y)] is true. ✓
So, we say ba |= ϕ: ba models ϕ.
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q0 q1

b
a
a

b

To capture the same language with a MSOL constraint:
First, define the ordering “<”:
x < y := ¬(x = y) ∧ ∀X[X(x) ∧ ∀z∀w(X(z) ∧ S(z,w)→ X(w))→ X(y)] and
define some shorthand:
ϕ(firsta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.z < x ∧ Qa(z))
ϕ(lasta) := ∃x.ϕ(x) ∧ Qa(x) ∧ (¬∃z.x < z ∧ Qa(z))
nexta(x, y) := Qa(x) ∧ Qa(y) ∧ (¬∃z.x < z ∧ z < y ∧ Qa(z))

∀x.Qa(x)→ ∃X.X(firsta)
∧ ∀y∀z.[nexta(y, z)→ (X(y)↔ ¬X(z))]
∧ ¬X(lasta)
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Theorem
A language L of finite-length strings is can be generated by a FSA iff
L is definable in MSOL[S].

The proof consists of showing that
(→) given an automaton, we can write a formula, and
(←) given a formula, we can construct an automaton.
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Given automaton A = (V,Q, q0, F,∆), write ϕA, a
MSOL[S]-sentence (a formula with no free variables) such that
σ |= ϕA for any string σ that is accepted by A.

That is, ϕA must express in σ the existence of an accepting run of A
on σ.
Strategy: Associate a set variable Xi with each state qi in A. This
set variable denotes the positions on the string when A assumes
state qi.
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if A has k states, we can use set variables X0, . . . ,X to describe
successful runs:

the Xi’s are pairwise disjoint sets over the positions (at
any position in the string, the automaton is in exactly one
state)
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for any pair of successive positions in the string x, y, there
is a valid transition given by the states at positions x and
y, and the label at position x
at the final position there is a valid transition into an
accepting state
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[
∧

i̸=j ∀x¬(Xi(x) ∧ Xj(x))

∀x(¬∃yS(y, x)→ X0(x))
∀x∀y(S(x, y)→

∨
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The form of this sentence: automata normal form.
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A accepts/generates a string σ iff

σ |= ∃X0 . . . ∃Xk

[∧
i̸=j

∀x¬(Xi(x) ∧ Xj(x))

∧ ∀x(¬∃yS(y, x)→ X0(x))

∧ ∀x∀y(S(x, y)→
∨

(qi,a,qj)∈∆

Xi(x) ∧ Qa(x) ∧ Xj(y))

∧ ∀x(¬∃yS(x, y)→
∨

(qi,a,qj)∈∆,qj∈F

Xi(x) ∧ Qa(x))
]
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In the other direction, show that given a formula ϕ of MSOL[S], we
can construct an FSA Aϕ, such that for any string which models the
formula σ |= ϕ, this string is accepted by Aϕ.

Strategy: A proof by induction on formulas. Show that for every
atomic formula, there is a simple FSA that recognizes precisely the
set of strings defined by that atomic formula.
For the inductive step show that this property is closed under
connectives and quantification.
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Work with the expressively equivalent (but syntactically simpler)
MSOL0[S]:

has only set variables (first order variables x are converted
to singleton set variables X).
connectives ¬ and ∨, and quantification ∃.

This means the proof must just

construct an FSA that is equivalent to each atomic
formula of MSOL0[S]
show that the class of recognizable languages is closed
under complement and union and projection
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Consequences and corollaries:

Any MSOL[S] formula can be wrien as one in ‘automata
normal form’.

General translation of logic to automata: hard. In
general, it has been shown that time-complexity of any
algorithm converting MSOL[S]→ automata cannot be
bounded by any elementary function (there is an
unbounded family of formulæ the corresponding
automaton’s number of states grows with length of

formula like 2 ↑↑ n = 22
. .

.2︸︷︷︸
n

. That’s a hey lower bound.



2.5 And so forth

FSA and MSOL[S] over strings 24/26

Consequences and corollaries:

Any MSOL[S] formula can be wrien as one in ‘automata
normal form’.
General translation of logic to automata: hard.

In
general, it has been shown that time-complexity of any
algorithm converting MSOL[S]→ automata cannot be
bounded by any elementary function (there is an
unbounded family of formulæ the corresponding
automaton’s number of states grows with length of

formula like 2 ↑↑ n = 22
. .

.2︸︷︷︸
n

. That’s a hey lower bound.



2.5 And so forth

FSA and MSOL[S] over strings 24/26

Consequences and corollaries:

Any MSOL[S] formula can be wrien as one in ‘automata
normal form’.
General translation of logic to automata: hard. In
general, it has been shown that time-complexity of any
algorithm converting MSOL[S]→ automata cannot be
bounded by any elementary function (there is an
unbounded family of formulæ the corresponding
automaton’s number of states grows with length of

formula like 2 ↑↑ n = 22
. .

.2︸︷︷︸
n

. That’s a hey lower bound.



2.6 And so on

FSA and MSOL[S] over strings 25/26

So, MSOL is a nice way to describe languages that can be accepted
by FSAs.

Translating in general is hard, but… most things that can
be said in logic are not things we want to say.
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Thanks!
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