
Training Tensor Trains, a brief travail (and comparison with HMMs)
15 December 2020 IFT6269 Group 22: Js Palucc and Hoov {jacob.hoover, jonathan.palucci}@mail.mcgill.ca

Overview

There is a theoretical equivalence between a certain type of tensor

network called amatrix product state (MPS) or tensor train (TT),with

positive values, and HMMs.

Other similar tensor networks called Born machines are not exactly

equivalent but are closely related. We implemented these tensor

networks, and tested their capacity to fit categorical data, compar-

ing them to each other and to an HMM model in practice.

What we did

We based our project on Glasser et al. (2019). They provided code
for training these tensor networks. Limitations:

code was written in numpy

explicit computation of model gradients,

training by a custom implementation of a batched gradient descent algorithm.

For more flexibility in we rewrote the models from scratch
rewritten in pytorch using einsum
autograd for differentiation (simpler and much more flexible!)A

flexibility to choose optimization algorithms

option for homogeneous as well as non-homogeneous models

Contraction algorithm

General algorithm

The learning algorithms used minimize the negative log-likelihood:

−
N∑

i=1
log Txi

ZT
= − log p̂(x1:n)

Z(A)
.

Tensor networks make use of a diagrammatic calculus where col-

lapsing an index corresponds to tensor contraction.

Contract network to get unnormalized probability value p̂(x1:n):
Contract left boundary vector, α, with the first tensor core A1
Contract tensor cores with each other from left to right, and terminate by

contracting with right boundary vector ω (see Figure 1a)

For a Born machine, take the modulus squared to get a positive real number.

Contract network to get normalizing constant, Z(A).
For a positive MPS, we contract the network in the same way but at each

tensor core, we sum over all possible values of the input

For a Born machine, we take two copies of the network and stick them

together (Figure 1b)

Then, the normalized probability is

p(x1:n) = p̂(x1:n)
Z(A)

,

where p̂(x1:n) = |f (x1:n)|2 for Born machines.

Um, what is a Tensor Network?

Tensor T : n-order array (array with n different indices).

vector: A matrix: A 3-order tensor: A

tensor contraction:
A B = AB

Representing probability distribution

Aprobability distribution for discreteX1, . . . , XN over {1, . . . , d} rep-
resented as tensor T with dN entries, TX1,...,XN

= P (X1, . . . , XN).

T

. . .

Tensor network: a factorization of a large (non-negative) tensor into

a network of smaller tensors.

A1

x1

A2

x2

A3

x3

A4

x4

α ω

(a) Example MPS

A1

A′1

A2

A′2

A3

A′3

A4

A′4

α

α

ω

ω

(b) Example Z

A1

A′1

A2

A′2

A3

A′3

A4

A′4

ω

ω

(c) Left boundary contraction

B1 A2

A′2

A3

A′3

A4

A′4

ω

ω

(d) Contract A1's to get B1.

B1 B2

A3

A′3

A4

A′4

ω

ω

(e) Contract A2's to get B2.

C2

A3

A′3

A4

A′4

ω

ω

(f) Contract B1 and B2 to get C2.

Figure 1: Demonstration of contraction.

Figure 2: Results on two different datasets. Note that the biofam dataset is

naturally sequential, while spect is not. Results from complex Born models may be

unreliable: these models behave unstably when loss is low (particularly at higher

bond dimensions), so some results are omitted.

Numerical Stability Trick

initialize direction unit vector ṽ0← α/ ‖α‖
initialize log norm scalar c0← log ‖α‖

for i in length of sequence:

vi← exp[ci]ṽi

ṽ
(temp)
i+1 ← vi contract with Ai+1xi+1

ci+1 = ci + log
∥∥∥∥ṽ(temp)

i+1

∥∥∥∥
ṽi+1← ṽ

(temp)
i+1 / log

∥∥∥∥ṽ(temp)
i+1

∥∥∥∥
endfor

return unnormalized probability p̂(x1:n) = exp[cn] + log(ṽ>n ω)

Training and comparison

HMMmodel for comparison

Modified version of the HMM implemented in HW4 to work on

multiple sequences of categorical data. Also a model from package

`pomegranate' (Schreiber, 2018) for comparison.

Preliminary Results (Figure 2)

for the most part, the homogeneous models have worse

performance than the non-homogeneous models

qualitatively we see the same pattern that Glasser et al. report.
Compared to Positive MPS, Born models achieve better fit, with complex

outperforming real; higher bond dimension = better fit

performance of non-homogeneous MPS is identical to homogeneous HMM

log-stability improves performance beyond Glasser's results for real Born

Next steps

test generalization performance

understand effect of homogeneity (depends on data set)

understand why complex models are unstable throughout training

Note and References

Glasser, I., Sweke, R., Pancotti, N., Eisert, J., and Cirac, I. (2019). Expressive power of tensor-network

factorizations for probabilistic modeling. In Advances in Neural Information Processing Systems,

pages 1496--1508.

Miller, J., Rabusseau, G., and Terilla, J. (2020). Tensor networks for probabilistic sequence modeling.

Schreiber, J. (2018). pomegranate: Fast and flexible probabilistic modeling in python. Journal of

Machine Learning Research, 18(164):1--6.

Notes

A Also pytorch-nightly v1.8 just came out with autograd support for einsum with complex floats!

	References
	Notes

