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Suppose information source is perturbed during transmission between
encoder and decoder.
In finite case, where perturbation of successive transmissions is
independent, this ‘noisy channel’ can be described as a set of conditional
probability distributions over input symbols given output symbols.

w xn = c(w) yn
iid∼ p(y | x) ŵ = g(yn) ŵ

encoder channel decoder

p(y | x) probability of transmi ed symbol x being receved as y.

Two statistical processes at work: source and noise

Problem: noise leads to some probability of error (that ŵ ̸= w).
Choose coding scheme to communicate e ectively as possible despite
this problem.

Idea: Agree on ‘widely spaced’ inputs, so that the probability of error
is small.
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Noisy-channel coding preview
To prove that a good coding exists, calculate average probability of error.
Show that average is small, therefore there must exist individual codes
with small probability of error.

for each (typical) Xn, there are ≈ 2nH(Y |X) possible Y n

Total number of (typical) Y n is ≈ 2nH(Y )

Total number of messages (distinguishable inputs) should be
2n(H(Y )/2H(Y |X)) = 2nI(X;Y )

To formalize these ideas, we need to discuss joint typical sequences
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Let X be a discrete random variable on X , and let pX be the probability
distribution ofX .

entropy

H(X) = EpX
[− log pX(x)], H(X,Y ) = EpX,Y

[− log pX,Y (x, y)]

conditional entropy

HY (X) = EpX,Y
[− log(pX,Y (x, y)

pY (y)
)] = H(X,Y )− H(Y )

mutual information

I(X : Y ) = EpX,Y
[− log( pX,Y (x, y)

pX(x)pY (y)
)] = H(X)− HY (X)
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Definition (discrete channel)

A discrete channel is a tuple (X , {px}x∈X ,Y), where X ,Y are finite
alphabets, and for each x ∈ X , px is a probability over Y .

Interpretation:

X is the input alphabet

Y is the output alphabet

the probabilities {px} define a transition matrix expressing the
probability of observing symbol y ∈ Y , given symbol x ∈ X was sent.

Mxy = px(y) = p(Y = y |X = x)

whereX,Y will always represent random variables over X and Y ,
resp. We can write channel as (X , pY |X ,Y).
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This discussion focuses solely on discrete channels which are memoryless,
and without feedback.

Definition
The nth extension of a discrete channel is the channel
(Xn, {pxn}xn∈Xn ,Yn). Say this channel is

memoryless i p(yk | xk
1 , y

k−1
1 ) = p(yk | xk) for all 1 ≤ k ≤ n; and

without feedback i p(xk | xk−1
1 , yk−1

1 ) = p(xk | xk−1
1 ) for all

1 ≤ k ≤ n.

The transition function for a discrete memoryless channel without
feedback factorizes as

pY n|Xn =

n∏
i=1

pY |X ,

so channel is specified by a pointwise transitions (Xn, pY |X ,Yn)
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Definition (channel capacity)

The information channel capacity of a channel (X , {pa}a∈X ,Y) is

C = max
pX∈P(X )

I(X : Y ) = max
pX∈P(X )

H(X)− HY (X)

Shannon calls this conditional entropy the ‘equivocation’ — average
ambiguity of the received signal.
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An (M ∈ N+, n ∈ N+) coding scheme encodesM di erent messages
from the source into codewords in Xn. WLOG, Let the messages simply
be the integers 1, . . . ,M .

Definition (block code)

A (M,n) code consists of an encoding function c : {1, . . . ,M} → Xn, and
a decoding function g : Yn → {1, . . . ,M}

The rate of a (M,n) code is R = 1
n logM (bits per transmission).

Denote by λ
(n)
w the conditional probability of error:

λ
(n)
w = Pr(g(Y n) ̸= w |Xn = c(w)) =

∑
{yn:g(yn )̸=w} p(y

n | c(w))

Denote λ(n)
max := maxw λ

(n)
w

A rate R is achievable if there exists sequence of (2nR, n) codes such
that the maximal conditional error vanishes for large enough n.

λ(n)
max → 0 (n → ∞)

Denote by λ
(n)
mean the mean conditional probability of error, over all

codewords, 1
2nR

∑2nR

w=1 λ
(n)
w .
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Theorem (AEP)

For an xn
1 iid sequence drawn from pX , −1

n log pXn(xn
1 )

p−→ H(X).

Proof is immediate from (weak) law of large numbers.

Define typical sequences as those for which the empirical entropy is close
to the true entropy.

Definition (typicality)

A sequence xn
1 is typical of distribution pX , to tolerance ϵ if

2−n(H(X)+ϵ) ≤ pXn(xn
1 ) ≤ 2−n(H(X)−ϵ).

Denote by A
(n)
ϵ (pX) the ϵ-typical set with respect to p.

AEP has consequences for the typical set, for its

measure, Pr{Xn ∈ A
(n)
ϵ } → 1 as n → ∞ (justifies ‘typical’)

size, |Aϵ| ≈ 2nH(X) for large n, (lower entropy means smaller typical
set)



background AEP and typicality noisy-channel coding theorem

(jointly) typical sequences joint AEP

Definition (joint typicality)

A pair of sequences (xn
1 , y

n
1 ) are jointly typical of distribution pXY (to

tolerance ϵ) if all three of the following requirements hold:

xn typical of pX :
∣∣−1

n log pX(xn
1 )− H(X)

∣∣ < ϵ

yn typical of pY :
∣∣−1

n log pY (yn1 )− H(Y )
∣∣ < ϵ

(xn, yn) typical of pXY :
∣∣−1

n log pXnY n(xn
1 , y

n
1 )− H(X,Y )

∣∣ < ϵ
where pXnY n =

∏
pXY

Denote by A
(n)
ϵ (pXY ) the ϵ-typical set with respect to pXY .

We will use the following consequences of AEP and jointly typicality in
designing the decoder later.
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Consequences of AEP for joint typical sequences:
Let (Xn, Y n) be drawn iid from pXY

1. probability that Xn, Y n are ϵ-jointly typical → 1.

2. The size of the jointly typical set is close to 2nH(X,Y )

3. If X̃n and Ỹ n are independent samples with distributions identical to
the marginals of pXY , then the probability of their being jointly
typical is close to 2−n I(X:Y ).

Theorem (joint AEP)

Let Xn, Y n ∼ pXnY n(xn, yn) =
∏

i pXY (xi, yi). Then

1. Pr{(Xn, Y n) ∈ A
(n)
ϵ } → 1 as n → ∞

2. |A(n)
ϵ | ≤ 2n(H(X,Y )+ϵ)

3. If (X̃n, Ỹ n)
iid∼ pX · pY , then Pr{(X̃n, Ỹ n) ∈ Aϵ} ≤ 2−n(I(X:Y )−3ϵ)
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1. Pr{(Xn, Y n) ∈ A
(n)
ϵ } → 1 as n → ∞

Proof.
By AEP, for ϵ > 0 there are n1, n2, n3 such that

for n ≥ n1, Pr{| − 1
n
log pXn(xn)− H(X)| ≥ ϵ} < ϵ/3

for n ≥ n2, Pr{| − 1
n
log pY n(yn)− H(Y )| ≥ ϵ} < ϵ/3

for n ≥ n3, Pr{| − 1
n
log pXnY n(xn, yn)− H(X,Y )| ≥ ϵ} < ϵ/3

Choose n greater than max{n1, n2, n3}.
Let U be union of sets above. Pr(U) < ϵ.
So, for large enough n, Pr(A(n)

ϵ ) > 1− ϵ.
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1. Pr{(Xn, Y n) ∈ A
(n)
ϵ } → 1 as n → ∞

2. |A(n)
ϵ | ≤ 2n(H(X,Y )+ϵ)

Proof.
Within the typical set, by definition,

H(X,Y )− ϵ ≤ −1

n
log pXnY n(xn

1 , y
n
1 ) ≤ H(X,Y ) + ϵ

2−n(H(X,Y )+ϵ) ≤ pXnY n(xn
1 , y

n
1 ) ≤ 2−n(H(X,Y )−ϵ)

So |A(n)
ϵ | 2−n(H(X,Y )+ϵ) ≤

∑
A

(n)
ϵ

p(xn, yn) ≤
∑

p(xn, yn) = 1

Note also that since

|A(n)
ϵ | 2−n(H(X,Y )−ϵ) ≥

∑
A

(n)
ϵ

p(xn, yn)

(for su iciently large n,) ≥ 1− ϵ (by 1.)

so for large n have also |A(n)
ϵ | ≥ (1− ϵ)2n(H(X,Y )−ϵ)
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1. Pr{(Xn, Y n) ∈ A
(n)
ϵ } → 1 as n → ∞

2. |A(n)
ϵ | ≤ 2n(H(X,Y )+ϵ), & for large n, |A(n)

ϵ | ≥ (1− ϵ)2n(H(X,Y )−ϵ)

3. If (X̃n, Ỹ n)
iid∼ pX · pY , then Pr{(X̃n, Ỹ n) ∈ Aϵ} ≤ 2−n(I(X:Y )−3ϵ)

Proof.

Pr{(X̃n, Ỹ n) ∈ A(n)
ϵ } =

∑
(xn,yn)∈A

(n)
ϵ

pXn(xn)pY n(yn)

≤ |A(n)
ϵ | 2−n(H(X)−ϵ)2−n(H(Y )−ϵ)

≤ 2n(H(X,Y )+ϵ)2−n(H(X)−ϵ)2−n(H(Y )−ϵ)

= 2−n(I(X,Y )−3ϵ)

Similarly to before, for large enough n,

Pr{(X̃n, Ỹ n) ∈ A(n)
ϵ } ≥ |A(n)

ϵ | 2−n(H(X)+ϵ)2−n(H(Y )+ϵ)

≥ (1− ϵ)2n(H(X,Y )−ϵ)2−n(H(X)+ϵ)2−n(H(Y )+ϵ)

= (1− ϵ)2−n(I(X,Y )+3ϵ)
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1. Pr{(Xn, Y n) ∈ A
(n)
ϵ } → 1 as n → ∞

2. |A(n)
ϵ | ≤ 2n(H(X,Y )+ϵ), & for large n, |A(n)

ϵ | ≥ (1− ϵ)2n(H(X,Y )−ϵ)

3. If (X̃n, Ỹ n)
iid∼ pX · pY , then Pr{(X̃n, Ỹ n) ∈ Aϵ} ≤ 2−n(I(X:Y )−3ϵ),

& for large n, Pr{(X̃n, Ỹ n) ∈ A
(n)
ϵ } ≥ (1− ϵ)2−n(I(X,Y )+3ϵ)

Remark

There are about 2nH(X) typical X sequences, and likewise for Y . Only
2nH(X,Y ) pairs of sequences are jointly typical, though.
Mutual information of X and Y tells how likely a randomly chosen pair of
sequences is to be jointly typical.
This is connected to the intuition behind the typical set decoding scheme.
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Theorem (noisy-channel coding1)

Take any discrete memoryless channel Q, with capacity

C = max
PX

I(X : Y ).

For any any ϵ > 0 and R < C , for large enough n there exists a code forQ of
length n and rate ≥ R and a decoding algorithm, such that the maximal
probability of block error is < ϵ.

For proof,

To prove existence of a good code, show that average probability of
error for a random choice of code is small, so there must be at least
one individual code with small error probability.

Allow error, but arbitrarily small, for large enough block length.

Make use of joint typicality for decoding that is simple to analyze
(not an optimal scheme, but su icient).

1Shannon (1948, Th. 11); MacKay (2003, Th. 10.1); Cover and Thomas (2006, Th. 7.1.1)
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Fix pX arbitrarily for now. For some rate R′, generate a (2nR
′
, n) code,

with encoding function set by sampling independently from pX .

c(1) = (c(1)1, c(1)2, . . . c(1)n)
c(2) = (c(2)1, c(2)2, . . . c(2)n)

...

c(2nR
′
) = (c(2nR

′
)1, c(2

nR′
)2, . . . c(2

nR′
)n)

That is, each entry in each codeword is independently generated:

c(w)i
iid∼ pX . Let c stand for this codebook.

Pr(c) =
2nR′∏
w=1

n∏
i=1

pX(c(w)i)



background AEP and typicality noisy-channel coding theorem

typical-set coding scheme asymptotically optimal code

1. random code generated according to pX
2. code revealed to both parties (both know channel transition pY |X )

3. message w chosen uniformly from {1, . . . , 2nR′}
4. transmission c(w) sent (n uses of the channel)

5. receiver receives sequence yn1 according to
∏n

i=1 pY |X(yi | xi)

6. receiver decodes by jointly typical decoding:
if ∃ ŵ such that (c(ŵ), yn

1 ) ∈ A
(n)
ϵ ,

and ∄ w′ such that (c(w′), yn
1 ) ∈ A

(n)
ϵ , decode g(yn

1 ) = ŵ
else, declare failure (can say g(yn

1 ) = 0, or undefined)

7. there is a decoding error if ŵ ̸= w. Let E be event of error.
average probability of error, over all codewords and all codebooks,

p̂E =
∑
c

Pr(c) 1

2nR′

2nR′∑
w=1

λ(n)
w (c) =

∑
c

Pr(c)λ(n)
1 (c)

is the avg probability of error of any particular codeword over all
codebooks. WLOG choose w = 1.
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Let Ev denote the event that (c(v), yn1 ) ∈ A
(n)
γ

(Given that w = 1) there are two possible sources of error:

a. received seq. not typical with transmi ed: (c(1), yn1 ) /∈ A
(n)
γ

For large enough n, Pr(Ec
1) < δ (by Joint AEP1, Pr(E1) → 1).

b. wrong codeword is typical with transmi ed: (c(w′), yn1 ) ∈ A
(n)
γ for w′ ̸= 1

For any message v, c(v) iid∼ pX , and also yn1
iid∼ pY .

So, Pr(Ev) ≤ 2−n(I(X:Y )−3γ) (by Joint AEP3).

p̂E = Pr(Ec
1 ∪

∪
w′ ̸=1

Ew) ≤ Pr(Ec
1) +

∑
w′ ̸=1

Pr(Ew)

≤ δ +

2nR′∑
w′=2

2−n(I(X:Y )−3γ) = δ + (2nR
′
− 1)2−n(I(X:Y )−3γ)

≤ δ + 2−n(I(X:Y )−3γ−R)

p̂E ≤ 2δ for su iciently large n, if R′ < I(X : Y )− 3γ. Thus for any rate
R′ < I(X : Y ), we can take n large enough that p̂E ≤ 2δ.
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We have: if rate R′ < I(X : Y ) then p̂E ≤ 2δ for large enough n.
We need: a particular code which has vanishing maximum probability of
error, for rate below capacity, C .

1. Fix pX = argmax
P(X)

I(X : Y ), the distribution which achieves capacity.

Thus, rate requirement becomes R′ < C

2. p̂E ≤ 2δ, so some code has mean probability of block error ≤ 2δ.

∃c∗λ(n)
mean(c

∗) =
1

2nR′

2nR′∑
w=1

λ(n)
w (c∗) ≤ 2δ

3. Delete2 worst half of the codewords. New codebook c′ of remaining
2nR

′−1 codewords achieves maximal block error λ(n)
max(c′) ≤ 4δ.

[Note, rate of this code is reduced, from R′ to R′ − 1
n ]

2Process has fancy name, ‘expurgation’ (MacKay, 2003, p. 167)



background AEP and typicality noisy-channel coding theorem

typical-set coding scheme asymptotically optimal code

We constructed code with rate R′ − 1
n , for R

′ < C , with maximal
probability of error < 4δ.
So, any rate below the channel capacity is achievable.

Remark

The code c′ above achieves the rate R < C for a given ϵ (as in the statement
of the theorem), by the above argument, se ing

R′ = (R+ C)/2,

δ = ϵ/4,

γ < (C −R)/3,

and n su iciently large
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