
A practical comparison of tensor train models: the effect of homogeneity

Jonathan Palucci 1 Jacob Louis Hoover 1

Abstract
Tensor network methods have been used exten-
sively in computational physics, and recently have
begun to be applied in machine learning. We fo-
cus on a particular family of these tensor factor-
izations known as tensor trains, or matrix product
states (MPS), as models for discrete multivariate
probability distributions. There is a general corre-
spondence between tensor networks and graphical
models, and in particular, when restricted to non-
negative valued parameters, an MPS is equivalent
to Hidden Markov Model (HMM). Glasser et al.
(2019) discuss this correspondence, and prove
theoretical results about these non-negative mod-
els, as well as similar real– and complex–valued
tensor trains. They supplement their theoretical
results with evidence from numerical experiments.
In this project, we re-implement models from their
paper, and also implement time-homogeneous ver-
sions of their models. We replicate some of their
results for non-homogeneous models, adding a
comparison with homogeneous models on the
same data. We find evidence that homogeneity de-
creases ability of the models to fit non-sequential
data, but preliminarily observe that on sequen-
tial data (for which the assumption of homogene-
ity is justified), homogeneous models achieve an
equally good fit with far fewer parameters. Sur-
prisingly, we also found that the non time homo-
geneous positive MPS performs identically to a
time homogeneous HMM.

1. Introduction
Tensor networks are a state of the art method for modelling
complex quantum systems. They have been explored ex-
tensively in computational physics and have recently gar-
nered attention as machine learning models, as a method
to efficiently represent high-dimensional systems. They
differ from neural networks in that they do not rely on
nonlinear activation functions. Instead, they use the mul-

1Group 22, equal contribution.

IFT 6269 project report - Université de Montréal

tiplicative interactions of tensors to capture complex pat-
terns in the data (Miller et al., 2020). They have recently
found applications in machine learning, including super-
vised learning (Stoudenmire & Schwab, 2016; Bradley et al.,
2020), unsupervised learning (Han et al., 2018; Cheng et al.,
2019), exploring the expressive power of neural networks
(Khrulkov et al., 2019b), parameter reduction in neural net-
works (Novikov et al., 2015; Khrulkov et al., 2019a), and
language modelling (Bradley & Vlassopoulos, 2020). Here
we explore their potential as probabilistic models of multi-
variate distributions (Stokes & Terilla, 2019; Miller et al.,
2020), partially replicating results from Glasser et al. (2019),
with additional observations.

Modelling a distribution with a tensor network involves rep-
resenting a high-dimensional tensor as a factorization into
smaller tensors. There is a natural correspondence between
tensor networks as models of distributions, and probabilis-
tic graphical models. To achieve efficient representations
of joint probability distributions, graphical models lever-
age a graph structure to express conditional dependence
between the random variables. Given a discrete probability
distribution over n random variables, each taking values
in {1, . . . , d}, the joint distribution may be represented as
an n-dimensional table (which has dn entries), where each
entry corresponds to the joint probability of a particular
outcome of the joint random variables X1, . . . , Xn. This
array can be viewed as a tensor T ∈ Rdn with non-negative
real entries with values between 0 and 1, and which sum to
1, so p(x1, . . . , xn) = Tx1,...,xn

. A tensor network can be
defined as a factorization of this large tensor. This leads to a
clear parallel between graphical models and tensor networks:
in the former case, we are concerned with the factorization
of a probability table and in the latter case, the factorization
of large tensors into a network of connected smaller tensors.
In this sense, discrete graphical models can be put into a
natural correspondence with non-negative tensor networks
(Robeva & Seigal, 2017).

In this paper, we will be concerned only with a specific kind
of tensor network called a tensor train, or matrix product
state (MPS). These models have a structure similar to a
Markov model (see Figure 2b). An MPS is simply a network
of order-3 tensors which are connected to each other along
an unobserved bond dimension (which can be thought of as
the number of hidden states in an HMM).

Comparing tensor train models

(a) scalar (b) vector (c) matrix (d) 3-tensor

A B = AB

(e) matrix multiplication

T

. . .

(f) general tensor

Figure 1: Examples of tensors.

2. Background
Similar to probabilistic graphical models, tensor networks
also make use of a simple and intuitive graphical language.
When a tensor network is used to model a joint probability
distribution, there is a natural relationship with (undirected)
graphical models. Even though the graph structure has dif-
ferent formal interpretation in each case, in both the graph
diagram can be used to economically describe a joint distri-
bution through select local relationships between variables.

Examples of simple tensors diagrams are given in Figure 1.
In the graphical language of a tensor network, a box corre-
sponds to a tensor, and a wire to an index. The number of
wires connected to a box determines the order of the tensor.
When two boxes are connected, this represents tensor con-
traction, corresponding to Einstein summation across the
corresponding indices (a generalization of the trace oper-
ation or matrix multiplication). A tensor network is itself
a tensor, with order corresponding to the number of wires
with a free end. A network where all wires are connected
on both ends (i.e. no free indices) is a scalar.

2.1. Tensor Networks as Probabilistic Models

A tensor network is simply any factorization of a tensor
into a collection of other tensors. It will be useful when
the factorization describes a low-rank (approximation) of a
high dimensional object. In order for such a network to be a
model of a probability distribution, we must simply describe
how to evaluate the network at a particular outcome, and
we must ensure that the values assigned to outcomes are
non-negative values which sum to 1.

A joint probability distribution for discrete random vari-
ables X1, . . . , XN over {1, . . . , d} is naturally modelled by
a tensor T with dN entries, TX1,...,XN

= P (X1, . . . , XN)
(graphically, a tensor box with n wires). Contracting this
network with inputs corresponding to the observation (that
is, plugging in an encoding of observed values at each posi-
tion), we obtain some scalar value, which, if we may ensure
it is non-negative, may be normalized to obtain a probability
model.

2.2. MPS models, positive, real and complex

There is a theoretical equivalence (in terms of expres-
sive power) between non-homogeneous HMMs and pos-

itive MPSs, when viewed as probabilistic models (Critch,
2014). Glasser et al. (2019) also prove that there are non-
homogeneous Born machines that cannot be modelled by
non-homogeneous HMMs (they also hypothesize that the
reverse direction is true). The comparison between HMMs
positive MPSs and Born machines can also be examined
in the homogeneous setting, however this a much more
recent concern. Srinivasan et al. (2020) prove that there
exist homogeneous Born machines that have no equivalent
homogeneous HMM, and vice-versa. However, all these
results are more theoretical in nature and do not focus on
the practical applications of these different models.

3. The models
The tensor network models we are interested in are very
simple: an MPS/tensor train consists of a collection of rank
3 tensors connected in a linear fashion, as depicted in Fig-
ure 2b. In our application, we call each of these tensors in
the network cores, and they are each of the same dimen-
sions, which will be d×D ×D, where physical dimension
d is the range of the input (the number of categories in the
distribution that we are modelling, the vertical wire), and
D is the bond dimension (the horizontal wires). We define
these networks with boundary vectors, in order to have all
of the cores be the same order.1 The parameters of an MPS
model consist in the values stored in the cores and boundary
vectors.

Evaluating the tensor network T at a particular observation
(x1, . . . , xn) to get a scalar involves getting a matrix from
each core by selecting the element of the core at the observed
value in the physical dimension, and then contracting the
network to get a scalar (see Figure 2). This is equivalent
to plugging in one-hot encodings of the observed values.
Interpreting the resulting scalar as a probability may be done
in two ways, as described below. To calculate the probability
for a particular configuration (x1, . . . , xN) we contract this
sequence with the network, as shown in Figure 3. This will
return a scalar value since the corresponding network will
have no free indices.

3.1. Positive MPS model

The most direct way to use an MPS as a probabilistic model
is to restrict all the values of the tensor cores to be in R≥0

(we will refer to this as a positive MPS - even if they would
be more accurately characterized as non-negative MPS).
When evaluating, the resulting scalar may be interpreted

1We could equivalently remove the boundary vectors for the
non-homogeneous models, and have the first and last cores be
of order-2, but this would not be possible for the homogeneous
models since the same order-3 tensor is used at each time step.

Comparing tensor train models

A1

X1

A2

X2

A3

X3

A4

X4

α ω

(a) A tensor train T , consisting of coresA1, . . . , A4, and boundary states α, ω.

M1 M2 M3 M4α ω

(b) Tx1,...,x4
, evaluated as α>M1 . . .M4ω whereMi = Ai(xi).

A1

Ā1

A2

Ā2

A3

Ā3

A4

Ā4

α

ᾱ

ω

ω̄

(c) T contracted with its complex conjugate, to compute the normalizer.

Figure 2: An example of a MPS/tensor train A for a sequence of
length 4. The contraction of the network in (a) with one-hot en-
coded inputs at each of the outgoing wires (evaluating the network
at an observation) is interpreted as the unnormalized probabil-
ity. The network is contracted with itself as in (b) to compute
normalization constant ZA.

directly as an unnormalized probability distribution:

p̂posMPS(X1, . . . , Xn) = TX1,...,Xn (1)

where T is an MPS. That is, we interpret as a probabil-
ity mass function the function which takes in a particular
configuration of the n random variables and contracts the
network at this configuration to generate a scalar value. For
a positive MPS, this scalar is guaranteed to be positive so it
can be used as the unnormalized probability.

In order for the above scalar to be a valid probability, it
must be properly normalized. Normalization is straightfor-
ward and efficient for MPS (normalization can in general be
computed exactly for any tensor network whose graph is a
tree; Bridgeman & Chubb, 2017). For a given positive MPS
the normalization constant is calculated by simply contract-
ing the network, summing over all possible values of the
observed input.

3.2. Born Machine models

Another way to interpret an MPS as a probabilistic model
is inspired by the Born Rule in quantum mechanics (Born,
1926), wherein the complex-valued wave function gives an
unnormalized probability density as its magnitude squared.
We will refer to this approach as the Born Machine inter-
pretation for MPSs, which allows us to formally interpret
such models as wavefunctions over n quantum spins (Miller
et al., 2020).2 This interpretation allows us to relax the
non-negative requirement above.

In this paper, we use Born Machines with parameters in
R (real Born), and in C (complex Born). To generate the
unnormalized probability for a Born Machine, we use the

2Informally, we can encode the probability distribution as a
wavefunction Ψ(x); then looking at a particular configuration
of the distribution corresponds to measuring the state of the sys-
tem and generates an unnormalized probability proportional to
|Ψ(x)|2.

same contraction algorithm as the positive MPS. The only
difference is that the resulting scalar may be negative or
complex. Taking the modulus squared of the output scalar
ensures that the output is positive and may be interpreted as
an unnormalized probability:

p̂Born(X1, . . . , Xn) = |TX1,...,Xn
|2 . (2)

For normalization in the Born machine interpretation, in-
stead of simply summing over all possible values of the
observed input, the network is contracted with its complex
conjugate, along the physical dimension. This will generate
a ladder type network (as shown in Figure 2c). Normaliza-
tion is computed by contracting this entire network. Tensor
contraction is associative, so the order of contraction makes
no difference for the outputted scalar, however, contracting
the network in specific orders can be much more efficient
(Bridgeman & Chubb, 2017). This computation can be done
efficiently by contracting the network as shown in Figure 3.
The resulting normalization constant corresponds to the L2

norm of the network.

3.3. Homogeneous and Non-homogeneous Models

An HMM can be time homogeneous or non-homogeneous,
depending on whether or not one restricts the set of parame-
ters which define the transition and emission probabilities to
be identical at each step of the sequence. The same concept
applies to an MPS. A time-homogeneous MPS has tensor
cores which are all identical, while a non-homogeneous
MPS allows different values in the tensor cores at each posi-
tion in the sequence. A length n sequence has potentially
n different tensor cores, making the number of parameters
scale linearly with the sequence length (with possibly a
hefty constant, if the dimensions are large). Conversely,
a homogeneous MPS has a single tensor core which is re-
peated n times. Not only does this result in a much smaller
model, but the recurrent nature of the model also provides
the flexibility to model sequences of varying length.

In this work, we begin to investigate the differences between
these two forms of MPS. Even though the idea of homoge-
neous and non-homogeneous MPSs is common, systematic
comparison between the two has not been explored empir-
ically. The use of homogeneous MPS models also allows
for a more natural and appropriate comparison to HMMs,
which are often used as homogeneous models.

4. Related Work
This paper is an extension to Glasser et al. (2019), which
explores the expressive power of different tensor network
factorizations for probabilistic modelling. We are interested
in exploring similar questions but with a particular emphasis
on practical comparisons. More specifically, perform a

Comparing tensor train models

A1

Ā1

A2

Ā2

A3

Ā3

A4

Ā4

α

ᾱ

ω

ω̄

(a) Network T connected to T̄

A′1

Ā′1

A2

Ā2

A3

Ā3

A4

Ā4

ω

ω̄

(b) After left boundary contraction

B1

A2

Ā2

A3

Ā3

A4

Ā4

ω

ω̄

(c) Contract first cores to getB1.

B1 B2

A3

Ā3

A4

Ā4

ω

ω̄

(d) Contract second cores to getB2.

C2

A3

Ā3

A4

Ā4

ω

ω̄

(e) ContractB1, B2 to get C2.

C4

ω

ω̄

(f) After penultimate contraction.

Z

(g) Result.

Figure 3: Demonstration of contraction to get normalization con-
stant.

more thorough comparison of different MPS models with
an HMM. In particular, Glasser et al. (2019) compare non-
homogeneous MPS models to a homogeneous HMM, and
do not explore the behaviour of homogeneous MPS models.
To make, what we feel is a more appropriate comparison,
we re-implemented the positive MPS and Born Machine
models that they use, and also implement homogeneous
variants of these models.

Another lingering question surrounding tensor network mod-
els is what is the best way to train them. If these models are
to be used for standard machine learning tasks, this is an im-
portant problem. The code provided by Glasser et al. (2019)
used custom implementations of the weight gradients and
a gradient descent algorithm, which did not allow for easy
experimentation with different model architectures or opti-
mization methods. For this reason, our re-implementation
is written from scratch in PyTorch, allowing possible mod-
ifications or extensions to the tensor network models, and
allowing the use of various optimization algorithms avail-
able in the torch.optim package, with gradients computed
by autograd.3

5. Training MPS models as ML estimators
To test how well these networks are able to fit to data, we
train the different tensor network models as Maximum Like-
lihood estimators, to fit data using gradient descent. We
compare these results with an HMM model trained using an
Expectation Maximization algorithm (Baum-Welch).

Given dataset D = {x(i) : i ∈ {1, . . . , N}}, where ob-
servations x(i) = (x

(i)
1 , . . . , x

(i)
n) generated according to

some joint distribution over n discrete multivariate random
variables, an MPS can be trained to approximate this distri-
bution through standard maximum likelihood estimation, by

3In order to use autodifferentiation with complex numbers
for these models, we needed to use a ‘nightly’ preview release
of PyTorch (v1.8), since operations such as einsum and batched
matrix multiplication are not currently supported for complex types
in the stable release.

minimizing the negative log-likelihood loss:

`(T ;D) = −
N∑
i=1

log
p̂T (x

(i)
1:n)

Z
(3)

The derivative of the log-likelihood which is used in the
gradient updates can be given by:

∂w` = −
N∑
i=1

∂wp̂T (x
(i)
1:n)

p̂T (x
(i)
1:n)

− ∂wZ

Z
. (4)

wherew is the weights of the model (the entries of the tensor
cores and boundary vectors).

5.1. Contraction algorithm with numerical stability

Contracting these networks is particularly prone to cause
overflow as the computations can quickly become very large
(due to the fact that we are taking large sums of products
when performing contractions). In order to avoid overflow
issues, we implemented our contraction algorithm with a
numerical stability trick. We cannot directly work with log
probabilities with a tensor network, but we may still increase
stability of the calculation during contraction by storing the
logarithm of the accumulated magnitude.

Algorithm 1 get unnormalized probability, with stability

initialize direction unit vector ṽ0 ← α/ ‖α‖
initialize accumulated log norm scalar c0 ← log ‖α‖
n← length of sequence
for i in {1, . . . , n− 1} do
vi ← exp[ci]ṽi
ṽ

(temp)
i+1 ← vi contract with Ai+1xi+1

ci+1 ← ci + log
∥∥∥ṽ(temp)
i+1

∥∥∥
ṽi+1 ← ṽ

(temp)
i+1

/
log
∥∥∥ṽ(temp)
i+1

∥∥∥
end for
return p̂(x1:n) = exp[cn] + log(ṽ>n ω)

We implemented a stabilized MPS contraction algorithm,
given in Algorithm 1. This algorithm works by contracting
the network left to right, in the same manner described in
Section 3 and shown in figures 2 and 3. Starting with the
left boundary vector, at each step there is a vector which
must be stored. Instead of storing this vector directly, we
record its log magnitude before normalizing to get a unit
vector. These log magnitudes may be summed, before being
re-exponentiated at the end of the computation, before the
final inner product with the right boundary vector.

5.2. Datasets

We used the same six datasets used in Glasser et al. (2019,
see there for references). These are: 5 datasets from the

Comparing tensor train models

UCI Machine Learning Repository (Lymphography, SPECT
Heart, Congressional Voting Records, Primary Tumor and
Solar Flare) and the biofam dataset of family life states
from the Swiss Household Panel biographical survey. Each
dataset consists of sequences of categorical variables (coded
as integers), where all sequences from a given dataset are
the same length.

Note that of these datasets, biofam is unique in that each
datapoint is naturally sequential (the features representing
family life status from age 15 to 30 for an individual). The
features in the other datasets are not naturally sequential.

5.3. Training regimen

Each model was trained for 2000 epochs using gradient
descent, using the Adam algorithm (Kingma & Ba, 2017, as
implemented in torch.optim), with an initial learning rate of
1× 10−3 to 1× 10−5 to, and a batch size of 50 for biofam,
20 for flare and votes, and 10 for the other datasets.

5.4. HMM model for comparison

For comparison with the tensor network models, we
followed Glasser et al. (2019) in using the Hidden
Markov Model implementation provided in the package
pomegranate (Schreiber, 2018), and training by EM for
1000 iterations using the Baum-Welch algorithm.

6. Results and discussion
Results of training each of the six MPS models and the
HMM model for comparison on each of the six datasets,
for various values of bond/hidden dimension are given in
Figure 4.

Qualitatively, for non-homogeneous models, we observe
the same pattern that Glasser et al. (2019) report. That is,
compared to Positive MPS, Born models achieve better fit,
with the complex Born often outperforming the real Born.
And, increasing the bond dimension (D) of the models leads
to better fit across all datasets, as expected.

Additionally, we found that we actually achieved better re-
sults than Glasser et al. (2019), specifically with the Born
machine models. This is presumably due to the numerical
stability trick which was implemented as we noticed that
this increased performance when used. Another possibility
is that using boundary vectors which served as trainable
parameters led to improved performance (they implemented
their models without boundary vectors, an option not avail-
able to us, without compromising direct comparability with
the homogeneous models).

Also as reported in the original paper, performance of non-
homogeneous MPS is effectively identical to homogeneous
HMM. This is in fact quite surprising. Given the theoreti-

cal correspondence between positive MPS and HMM, one
would expect that the homogeneous HMM and homoge-
neous positive MPS should pattern together, however this
was not the case, based on our results (which agree with the
results reported in Glasser et al. (2019), though they do not
discuss this puzzling fact). This alignment in the behaviour
of the two models, one homogeneous and the other non-
homogeneous is something that merits further exploration.
Even though there may be a theoretical equivalence between
the positive MPS and HMM, this equivalence does not hold
in practice.

As a general observation, it seems the homogeneous models
perform worse than the non-homogeneous models. This
is to be expected given that the non-homogeneous models
have many more parameters to fit to the data. There was
one exception to this: the biofam dataset. Interestingly, and
perhaps crucially, this was the only dataset which involved
a natural sequential order (they represent the family life
states from age 15 to 30). In this setting, the homogeneous
and non-homogeneous models had effectively identical per-
formance, even though the homogeneous models have a
fraction of the parameters. This is a novel result which we
would like to explore more.

6.1. A note on training tensor networks

Given that tensor networks have only recently begun to be
used in machine learning, there are no standard practices
for training them. In our experimentation, we found that
stochastic gradient descent with a fixed learning rate caused
a lot of instability. In order to avoid converging at a local
minimum, a large learning rate was necessary, however this
caused issues with exploding gradients, especially with the
complex Born models. It seems that these models need a
larger learning rate at the start of training in order to avoid
local minima, but a smaller learning rate later in training
in order to converge. Experimenting with optimizers in the
PyTorch optim package, we found that the Adam algorithm
led to the best results, while maintaining stability throughout
training.This could be due to the fact that Adam implements
a decaying learning rate throughout training, which seems
to be important for these networks.4

A good choice of initialization may also be important. We
began by initializing the tensor cores and boundary vectors
uniformly as ones and scaled them by the inverse square
root of the number of entries in the tensor (1/√D for each
boundary vector and 1/

√
dD2 for the tensor cores), to allow

the initial tensor to be naturally interpreted as a probability
model. This initialization led to stable training. We then
achieved better results using the same initialization but in-
jecting a small amount of gaussian noise (σ2 = 0.5, before

4Other optimizers that implement decaying learning rates such
as Adadelta and Adagrad also led to comparable results.

Comparing tensor train models

2 4 6 8 10
bond dimension

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

biofam (d=8, seq_length=16)

posMPS (hom)
posMPS (non-hom)
rBorn (hom)
rBorn (non-hom)
cBorn (hom)
cBorn (non-hom)
HMM

2 4 6 8 10
bond dimension

4

6

8

10

12

14

16

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

flare (d=8, seq_length=13)

2 4 6 8 10
bond dimension

10.0

12.5

15.0

17.5

20.0

22.5

25.0

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

lymphography (d=8, seq_length=19)

2 4 6 8 10
bond dimension

6

8

10

12

14

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

spect (d=2, seq_length=23)

2 4 6 8 10
bond dimension

6

7

8

9

10

11

12

13
ne

ga
tiv

e
lo

g
lik

el
ih

oo
d

tumor (d=4, seq_length=17)

2 4 6 8 10
bond dimension

6

8

10

12

14

16

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

votes (d=3, seq_length=17)

Figure 4: Negative log likelihood for each of the models, on each of the six datasets, showing the effect of varying bond dimension.
Shared legend shown in first plot. Each tensor network model was run for 2000 epochs. An HMM model with corresponding hidden
dimension is included for comparison (trained with EM for 1000 steps). Note that for the same bond dimension, Born models outperform
positive MPS, on all datasets, and additionally, non-homogeneous models outperform corresponding homogeneous models, on all datasets,
with the exception of biofam. In all cases, the HMM matches the non-homogeneous positive MPS.

scaling).5

7. Conclusion
Based on our results, it is not clear that non-homogeneous
models should always be preferred over homogeneous ones
in terms of ability to fit to data. It seems that this is highly
dependent on the task at hand. In this selection of datasets, it
does seem to be the case that the Born machines outperform
positive MPS, but it isn’t clear whether this would always be
the case. In addition, the HMM model performs comparably
to the other models given that it has fewer parameters (espe-
cially at higher bond dimensions). From a machine learning
perspective, it would be interesting to fully understand the
theoretical predictions about these models’ expressive pow-
ers, and how this would relate to the structure that underlies
the data.

For all datasets except lymphography, we see that the ho-
mogeneous Born models outperform the non-homogeneous

5We also experimented with a similar initialization but instead
of all ones, we used a random gaussian initialization centered
at 0 with a variance of 1. We then scaled this by 1/

√
D for the

boundary vectors and 1/
√
dD2 for the tensor cores. However, this

initialization led to instability during training, for reasons that are
still unclear to us.

positive MPS model at higher bond dimensions. It is pos-
sible that with bond dimensions higher than 10, we would
see the same pattern for lymphography, though we did not
explore high bond dimensions extensively due to computa-
tional cost. This suggests that certain datasets may favour
the use of Born models. Understanding when this is the case
is an interesting empirical question that can help to further
understand when these models are appropriate.

One important aspect of these models’ behaviour that we
would like to test in the future is generalization performance.
Tensor networks are claimed to generalize very well (Miller
et al., 2020; Bradley et al., 2020), and in their preliminary
experiments, Glasser et al. (2019) found that while the pos-
itive MPS and HMM achieved nearly identical fit on all
datasets, the positive MPS generalized much better. This is
an important issue for standard machine learning tasks and
is a promising next step in comparing these models.

Comparing tensor train models

References
Born, M. Quantenmechanik der stoßvorgänge. Zeitschrift

für Physik, 38(11-12):803–827, 1926.

Bradley, T.-D. and Vlassopoulos, Y. Language modeling
with reduced densities, 2020.

Bradley, T.-D., Stoudenmire, E. M., and Terilla, J. Modeling
sequences with quantum states: A look under the hood.
Machine Learning: Science and Technology, 2020.

Bridgeman, J. C. and Chubb, C. T. Hand-waving and
interpretive dance: an introductory course on tensor
networks. Journal of Physics A: Mathematical and
Theoretical, 50(22):223001, May 2017. ISSN 1751-
8121. doi: 10.1088/1751-8121/aa6dc3. URL http:
//dx.doi.org/10.1088/1751-8121/aa6dc3.

Cheng, S., Wang, L., Xiang, T., and Zhang, P. Tree tensor
networks for generative modeling. Physical Review B, 99
(15):155131, 2019.

Critch, A. Algebraic geometry of matrix product states. Sym-
metry, Integrability and Geometry: Methods and Appli-
cations, Sep 2014. ISSN 1815-0659. doi: 10.3842/sigma.
2014.095. URL http://dx.doi.org/10.3842/
SIGMA.2014.095.

Glasser, I., Sweke, R., Pancotti, N., Eisert, J., and Cirac,
I. Expressive power of tensor-network factorizations for
probabilistic modeling. In Advances in Neural Informa-
tion Processing Systems, pp. 1496–1508, 2019.

Han, Z.-Y., Wang, J., Fan, H., Wang, L., and Zhang, P.
Unsupervised generative modeling using matrix product
states. Physical Review X, 8(3), Jul 2018. ISSN 2160-
3308. doi: 10.1103/physrevx.8.031012. URL http://
dx.doi.org/10.1103/PhysRevX.8.031012.

Khrulkov, V., Hrinchuk, O., Mirvakhabova, L., and Os-
eledets, I. Tensorized embedding layers for efficient
model compression. arXiv preprint arXiv:1901.10787,
2019a.

Khrulkov, V., Hrinchuk, O., and Oseledets, I. V. General-
ized tensor models for recurrent neural networks. CoRR,
abs/1901.10801, 2019b. URL http://arxiv.org/
abs/1901.10801.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Miller, J., Rabusseau, G., and Terilla, J. Tensor networks
for probabilistic sequence modeling, 2020.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P.
Tensorizing neural networks. CoRR, abs/1509.06569,
2015. URL http://arxiv.org/abs/1509.
06569.

Robeva, E. and Seigal, A. Duality of graphical models and
tensor networks, 2017.

Schreiber, J. pomegranate: Fast and flexible probabilistic
modeling in python. Journal of Machine Learning Re-
search, 18(164):1–6, 2018. URL http://jmlr.org/
papers/v18/17-636.html.

Srinivasan, S., Adhikary, S., Miller, J., Rabusseau, G., and
Boots, B. Quantum tensor networks, stochastic processes,
and weighted automata, 2020.

Stokes, J. and Terilla, J. Probabilistic modeling with matrix
product states. Entropy, 21(12):1236, 2019.

Stoudenmire, E. and Schwab, D. J. Supervised learning
with tensor networks. In Advances in Neural Information
Processing Systems, pp. 4799–4807, 2016.

http://dx.doi.org/10.1088/1751-8121/aa6dc3
http://dx.doi.org/10.1088/1751-8121/aa6dc3
http://dx.doi.org/10.3842/SIGMA.2014.095
http://dx.doi.org/10.3842/SIGMA.2014.095
http://dx.doi.org/10.1103/PhysRevX.8.031012
http://dx.doi.org/10.1103/PhysRevX.8.031012
http://arxiv.org/abs/1901.10801
http://arxiv.org/abs/1901.10801
http://arxiv.org/abs/1509.06569
http://arxiv.org/abs/1509.06569
http://jmlr.org/papers/v18/17-636.html
http://jmlr.org/papers/v18/17-636.html

