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Overview

Two kinds of relationships between words in natural
language

1. Linguistic dependencies: tree structure over
sentence, representing compositional structure

2. Statistical dependence: how words affect prob-
ability of other words

= Do words that are statistically dependent tend to
be those in linguistic dependencies?

We use pretrained LMs to estimate statistical de-
pendence as CPMI (defined below), which we can
compare to linguistic dependencies. We find:

1. CPMI dependency accuracy is only as high as a
simple baseline that connects adjacent words

> across languages
> even for syntactically-aware LMs
» even between POS tags instead of wordforms

2. CPMlI-dependencies differ substantially be-
tween LMs.

Statistical dependence: CPMI

Pointwise mutual information (PMI) quantifies statisti-
cal dependence between words. In context:
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We define Contextualized Pointwise Mutual Infor-
mation (CPMI), an estimate of PMI between two

words in a sentence W = wy.,, using a pretrained lan-
guage model M:

X" probability of w; given
sentence without w;

Puw; | W_)

" as above, but
pM(Wi | W—i,j)'_,also without w;.

CPMI,(w;; w;) = log
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Extracting CPMI-dependencies

(1) Compute of matrix of CPMI values per sentence
(2) Extract max-CPMI spanning tree per sentence
(3) Compute accuracy against gold dependencies
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Analysis of CPMI-dependencies
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We compute unlabeled undirected ,
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attachment score (UUAS; the pro-

portion of edges in common) be- Word2Vec 39
tween LM’'s CPMI-dependencies BERT base 46
and gold dependencies. BERT large A7
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Accuracy of CPMI trees is only as

good as the connect-adjacent| xiNet base 45
baseline, at best. XLNet large A1
. illaLSTM .44

» across multiple languages M
5 ONLSTM 44

> also for syntactically-aware LMs. ONLSTM-SYD .45

> also for dependence between as POS tags.

UUAS for CPMI dependencies on multilingual Parallel Universal Dependencies
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Looking closer at CPMI-dependencies from pre-
trained LMs, we find that

> accuracy is not correlated with LM performance

> CPMI-dependencies over-predict connecting ad-
jacent words more often than gold (esp. BERT's):

Dependency arc length histograms
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* no types of dependency have very high accuracy
beyond connecting adjacent words:
Accuracy (recall) by gold label (only labels with n>60)
n @ 1000 @ 2000 @ 3000
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> CPMI-dependencies differ substantially be-
tween LMs
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