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• Recently some work has explicitly proposed that linguistic 
dependencies connect words that are statistically dependent

• Futrell et al. (2019): Syntactic dependencies correspond to 
word pairs with high mutual information.

• very recently, Zhang & Hashimoto (2021): On the Inductive Bias 
of Masked Language Modeling: From statistical to syntactic 
dependencies. [Closely related study, simultaneous to ours. I’ll return to this]
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We set out to answer the question: Are words that are statistically 
dependent likely to be in linguistic dependencies?  

• Estimate statistical dependence between words using modern 
pretrained contextualized language models (e.g. BERT, XLNet)—
our current best estimators of probability of words in context—rather 
than earlier statistical techniques


We find that connecting words which are statistically dependent and 
comparing with linguistic dependency yields accuracy only as high as 
simple baseline connecting adjacent words.

• true across languages, 

• true for syntactically-aware LMs, 

• true statistical dependencies between POS tags too

our investigation

statistical dependence&linguistic dependency
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method
CPMI-dependency parsing

1. compute of CPMI values for each pair of words in 
sentence

• extract the maximum-CPMI spanning tree

Note: PMI is symmetric, but LM’s estimates may 
not be.  We symmetrize the matrix first.

2. compare max-CPMI tree to gold tree
That

theory

is

realisti
c

.

That
theory

is realisti
c
.

That theory is realistic .
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Table 1 in paper. 

Unlabeled undirected attachement score

(UUAS) for max-CPMI trees pretrained 

language models on PTB dev split (sec 22).

comparison with Zhang & Hashimoto (2021)
CPMI-dependency parsing

Their method is slightly different, but their results are 
very similar (though their interpretation is different).


For their study as for ours, attachment score is 
about as high as the connect-adjacent baseline.
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Table 4 in Zhang and Hashimoto (2021). 

Unlabeled undirected attachement score (UUAS) using 
BERT base on subsampled PTB test split (sec 23). 
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• CPMI-dependencies 
overpredict connections 
between adjacent words 
(length = 1)


• especially BERT
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CPMI-dependency parsing

Looking more closely:
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• no relation has particularly high accuracy, beyond just 
connecting adjacent

more detailed analyses of large pretrained LM results
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Takeaways: 

1. CPMI-dependency accuracy only at most about as good as a simple 
connect-adjacent baseline.
• True across languages, 
• True for syntactically-aware LMs, 
• True about statistical dependencies between POS tags as well as wordforms

2. statistical dependencies differ substantially between LMs.

• looking at differences in CPMI-dependencies can be a tool to understand 
these networks model statistical dependencies
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