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how are they connected?

* Long tradition of unsupervised dependency parsing assumes a
connection. Also explored in earlier statistical studies

« Magerman and Marcus (1990), de Paiva Alves (1996) ...

* Recently some work has explicitly proposed that linguistic
dependencies connect words that are statistically dependent

* Futrell et al. (2019): Syntactic dependencies correspond to
word pairs with high mutual information.

e very recently, Zhang & Hashimoto (2021): On the Inductive Bias
of Masked Language Modeling: From statistical to syntactic
dependencies.



linguistic dependency & statistical dependence

our investigation

We set out to answer the question: Are words that are statistically
dependent likely to be in linguistic dependencies?

* Estimate statistical dependence between words using modern

pretrained contextualized language models (e.g. BERT, XLNet)—
our current best estimators of probability of words in context—rather

than earlier statistical techniques

We find that connecting words which are statistically dependent and
comparing with linguistic dependency yields accuracy only as high as
simple baseline connecting adjacent words.

* true across languages,
* true for syntactically-aware LMs,
 true statistical dependencies between POS tags too
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CPMIl-dependency parsing

method

sentence

o extract the maximum-CPMI spanning tree

. compute of CPMI values for each pair of words in

Note: PMI is symmetric, but LM’s estimates may

not be. We symmetrize the matrix first.

2. compare max-CPMI tree to gold tree
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. Table 1 in paper.
Overa” attaChment SCcore Is no Unlabeled undirected attachement score
: _ (UUAS) for max-CPMI trees pretrained
h::lg_her tl-‘t‘abn th? conneCt language models on PTB dev split (sec 22).
dadjacent baseline.




CPMI-dependency parsing

comparison with Zhang & Hashimoto (2021)

Method UUAS random 22
SANDOM b / connect-adjacent .49
LINEARCHAIN 47.69
Klein and Manning (2004) 48.76 + 0.24 Word2Vec 39
PMI 28 05 BERT base 46
CONDITIONAL PMI 44.75 + 0.09 / BERT large 47
CONDITIONAL MI 50.62 + 0.38 DistilBERT 48
Bart large 38
Table 4 in Zhang and Hashimoto (2021). XILM 42
Unlabeled undirected attachement score (UUAS) using
BERT base on subsampled PTB test split (sec 23). XLNet base 45
XLNet large 41
Their method is slightly different, but their results are Table 1 in paper.
very similar (though their interpretation is different). Unlabeled undirected attachement score
(UUAS) for max-CPMI trees pretrained
For their study as for ours, attachment score is language models on PTB dev split (sec 22).

about as high as the connect-adjacent baseline.
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more detailed analyses of large pretrained LM results

Looking more closely:

 CPMI-dependencies
overpredict connections
between adjacent words
(length = 1)

* especially BERT

Dependency arc length histograms

25k 25k 25k 25k
20k 20k 20k 20k
15k 15k 15k 15k
10k 10k 10k 10k
5k 5k 5k 5k
123456789 123456789 123456789 123456789
gold Bart BERT DistiBERT
25k 25k 25k 25k
20k 20k 20k 20k
15k 15k 15k 15k
10k 10k 10k 10k
5k 5k 5k 5k
123456789 123456789 123456789 123456789
random Word2Vec XLNet XLM

Figure 7: Histograms of arc length. Note, 49% of the
gold arcs are length 1, whereas all of the CPMI de-
pendencies had a higher proportion. BERT (base), in
particular has 72%. For Word2Vec (which does not
have access to word order), 47% are length 1. For the
connect-adjacent baseline (not shown) the histogram is
trivial: all arcs are length 1.
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CPMIl-dependency parsing

more detailed analyses of large pretrained LM results

Looking more closely:

* no relation has particularly high accuracy, beyond just
connecting adjacent

Accuracy (recall) by gold label (only labels with n>60)
n @ 1000 @ 2000 @ 3000

model BERT DistiiBERT XLNet Word2Vec random X connect-adjacent
- all arc lengths arc length > 1
£ mean arclength mean arclength
ko)) advcl 8.7 % advcl 8.8
c ccomp 6.9 >>é ccomp 7.1
o conj 6.1 6.6
o mark 5 "X ce .
= _dep 4.5 G conj 6.2
© nsubjpass 4.3% dep 6.1
C cc 4.1 >< prep 57
© rcmod 4.1X% :
o vmod 3.3 + =X mark 5.2
S xcomp 3.1 X vmod 4.9
> tmod 3 > nsubj 4.4
Q appos 2.8 X W advmod 4.4
k' ngr%% Sg ' >< nsubjpass 4.3
5 dobj 2.4 > rcmod 4.1
g poss 2.4 X tmod 4
S advmod 2.4 X appos 3.5
- pobj 2.3 >< : xcomp 3.3
@ npadvrggg %1 o4 cop 2.9
< det 1.7 ¥ pobj 2.9
- pcomp 1.6 Y X poss 2.8
e quantmgg 12 ~ dobj 2.8 4
% amod 1.4 & npadvmod 2.7
© aux 1.4 nn 2.5
% num 1.3 ‘ det 2.5
a neg 1.3 X amod 2.5
@® auxpass 1.2 X v. aux 2.4
g numtﬁ; 1% x quantmod 2.3
S Possessive 1 X num 2.1
o 0.00 0.25 0.50 0.75 1.00 0.0 0.1 0.2 0.3 0.4 0.5

recall (# CPMI arc = gold arc)/(# gold arcs)
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Conclusion

What we did: We used large pretrained LMs to examine whether words that are
statistically dependent are likely to be in a linguistic dependency relationship.

Takeaways:
1. CPMI-dependency accuracy only at most about as good as a simple
connect-adjacent baseline.
* True across languages,
* True for syntactically-aware LMs,
* True about statistical dependencies between POS tags as well as wordforms

2. statistical dependencies differ substantially between LMs.

* looking at differences in CPMI-dependencies can be a tool to understand
these networks model statistical dependencies



I h a n k o u ' paper: arxiv.org/abs/2104.08685
y u code: github.com/mcqll/cpmi-dependencies
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